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Decision makers in health, public policy, technology, and social science are increasingly interested in going
beyond ‘one-size-fits-all’ policies to personalized ones. Thus, they are faced with the problem of estimating
heterogeneous causal effects. Unfortunately, estimating heterogeneous effects from randomized data requires
large amounts of statistical power and while observational data is often available in much larger quantities the
presence of unobserved confounders can make using estimates derived from it highly suspect. We show that
under some assumptions estimated heterogeneous treatment effects from observational data can preserve the
rank ordering of the true heterogeneous causal effects. Such an approach is useful when observational data is
large, the set of features is high-dimensional, and our priors about feature importance are weak. We probe the
effectiveness of our approach in simulations and show a real-world example in a large-scale recommendations
problem.
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1 INTRODUCTION
Data-grounded approaches to decision making have become immensely popular in industry, health,
and public policy [6, 35, 36, 41]. Making decisions using this data requires the ability to answer
counterfactual questions, such as: ‘What would happen if we implemented Z?’ It is well known that
because even the most comprehensive data sets will have unobserved confounders, models trained
purely on observational data can give very misleading answers to questions about causal treatment
effects [5, 35]. In this paper we show that, for certain counterfactual questions, observational data
can be used to inform a prior on heterogeneity, which can improve the analysis design and the
identification of treatment effects.

The traditional estimator in a randomized trial is the average treatment effect [5, 32, 33]. However,
in practice most designs are likely to have different effects across different groups [24]. Under-
standing this heterogeneity is particularly important when a design is too expensive to implement
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on the entire population (and should therefore target those who will benefit the most) or when a
design has positive effects for some, but may not be appropriate for others [1, 19, 33].

Unfortunately, in many domains average effects are small (in terms of signal-to-noise), the set of
user-level covariates is high-dimensional, and we are a priori uncertain about which covariates are
important predictors of heterogeneity. The combination of these conditions means that, in order to
identify heterogeneous effects precisely, controlled analyses need to be very large and, in general,
prohibitively costly [40].
Observational data is increasingly available in much larger quantities [35, 36, 49]. In online

platforms, for example, these data can include precise measures on user activity, conversion rates,
content order, and engagement over time. It is well known that using observational data as if it is
randomized, in general, yields biased causal estimates due to the problem of confounding [2, 19].
However, we will show that this observational data can still be useful.

We suggest an approach that combines observational data with controlled experiments in order
to learn heterogeneous effects. In essence, we propose using the observational data to estimate
heterogeneous effects as if it were a randomized experiment. These estimates will be biased,
however, we discuss the conditions on the structure of confounding that imply that rank-ordering
of heterogeneity is preserved. We explore these conditions with a simple simulation study.

We then move to an example where observational data comes from a panel. Such data is common
for many online applications. In the panel each unit has a covariate profile ci , we observe some
outcomeyti and variation in an endogenous variable of interest x ti at the individual level. We regress
y on x at the individual level (alternatively: with fixed effects and interactions), take the individual
level estimated coefficients, and train a classifier to predict each individual’s implied regression
coefficient (i.e. their personalized effect) from their covariate profile.

We apply this to predict ranks of treatment effects in two datasets. Our first is recommendations on
a large social platform. We first use user-level observational panel data to estimate the relationship
between page recommendations and user engagement with the platform. We then construct a
classifier to construct a mapping from a large set of observable features c to the individual-level
observationally estimated effect. We then use this classifier to predict treatment effects in a real
randomized trial testing a new recommendation feature. Stratifying the trial by predicted treatment
effects, we find an increasing relationship between the observationally estimated and the actual
treatment effect. In addition to this large experiment, we also consider estimating heterogeneous
effects in grants to microenterprises from recent work in development economics [17]. Here we
use pre-experiment survey data as our observational component.

Of course, we do not claim that rank of heterogeneous effects will be preserved in all observational
datasets. Further, we do not aim to replace randomization and standard heterogeneous effects
analysis. Rather, we argue that analysts can simply add the observationally predicted heterogeneous
effect into the feature space for whatever heterogenous effect model they plan to fit. This has a
cost in terms of model complexity but if the covariate space is already high dimensional then this
cost is negligible. However, if conditions are favorable, the benefits may be large.

1.1 Related literature
Our work relates to an extensive literature on the evaluation of heterogeneous treatment effects.
Several methods traditionally allowed researchers to specify population subgroups and test for
differences across them [24, 30]. These subgroups typically need to be specified before launching
a controlled testing evaluation, e.g. time-stamping a pre-analysis plan, to avoid concerns that
researchers might engage in p-hacking, or data snooping, that is to iteratively search across features
or subgroups and present those that are significant [18, 23, 34, 42]. However, such restrictions can
sometimes prevent researchers from finding unexpected true heterogeneous effects.
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More recent work in machine learning, statistics, and econometrics is focused on automating the
heterogeneous effects estimation problem [5] to both streamline the detection of heterogeneous
effects and attenuate some of the dangers described above. There are many methods for estimated
such effects including non-parametric procedures [15, 48], regularized regression [31, 44], decision
trees [26, 47], causal trees and random forests [4, 50], Bayesian additive regression trees [13], neural
networks [46], double machine learning [12], ‘virtual twin’ analyses [22], custom generated ‘types’
[21], and mixtures of models [27]. We do not propose a new method, rather we propose a way to
combine observational and randomized data to learn heterogeneous treatment effects. While in
this paper we use a panel-based approach to actually estimate the mapping between covariates and
treatment effects, any of these existing methods can be used in its place.
Our work combines observational and randomized data. Recent advances in machine learning

have looked at combining collections of experiments [28, 43] to learn causal effects (rather than
treatment effects). An interesting direction for future work is to combine these methods with
observational data.

Our work is also related to research combining biased and unbiased survey samples using ‘data
enriched’ linear regression [11]. More generally, it relates to a growing literature on semi-supervised
learning [14, 51], and multitask learning [10]. The closest to our work looks at learning feature
representations using observational data for analysis of experimental data [37]. The idea behind all
of these approaches is that multiple tasks that a machine learning method can be asked to do are
not independent. Therefore, learning to perform one task can make a model better at a correlated
task. Exploring connections between our panel-style setup and these methods is an interesting
direction for future work.

2 HETEROGENEOUS EFFECTS
2.1 The Model
Consider the standard panel data problem in causal inference. We define i as the units of observation.
Each i has a covariate profile ci which may be high dimensional. Time is indexed by t , y is the
continuous potential outcome scalar x is the endogenous variable of interest with potential policies
affecting values of x .

We assume each user has a linear response to the treatment: when xi increments by one unit, yi
will increase by βi .We assume linearity because in many cases of interest our treatment will have
relatively small effects on x and thus we are interested in the locally linear approximation of the
true response function.This covariate is assumed to be fixed per user and not affected by policy
choices.

There is a mapping f from covariates to treatment effects, βi = f (ci ) + ei , and the key to design
a good personalization is to learn this mapping. For simplicity, assume that this function is linear,
such that βi = ci · ζ , where · represents the standard dot product.

One way to estimate f (ci ) is to run a large scale experiment. We can raise xi by one unit in the
treatment group, while we leave xi unchanged in the control group, and estimate the relationship:

βi = E(f (ci )) = E(y | Ti = 1, ci ) − E(y | Ti = 0, ci )

which can be estimated using any off-the-shelf methods in the literature [4, 22, 26, 27, 31, 46–48, 50].
However, when treatment effects are relatively small and the covariate space is large, these

methods require that we run large and expensive experiments. Advertising campaigns, for example,
often have very small conversion rate effects, and it is not rare for even large scale controlled
experiments to find insignificant single homogeneous effects [3, 38]. And therefore, estimating
heterogeneous effects across subgroups can be more challenging.

EC’19 Session 2b: Online Platforms

201



We consider the case where we have an observational panel generated by following process:

x ti = θi + ϵ
t
i + z

t
iψi (1)

and

yti = µi + x
t
i βi + z

t
iγi + η

t
i (2)

Here ϵ and η are iid white noise error terms, z is some time varying unobserved variable (which
in general can be a vector but for ease of notation we write as a scalar quantity), µ and θ are
unobserved variables that are fixed at the user level. For simplicity, all of these variables have
mean 0 with finite variances. This is without loss of generality as we could include some observed
variablesOt

i , and then use, not the original x and y, but x and y conditional onO (i.e. the residuals).
Suppose we had observational panel data of the form (x ti ,y

t
i , z

t
i ) with time t ∈ {1, . . . ,T }, where

T is large and Z was observed. We could estimate individual effects running unit-level regressions
of yti on (x ti , z

t
i ). This would yield a consistent estimate of βi .We could then learn ζ by regressing

these unit-level estimates on ci .
Consider using the same strategy without observing z. Let β̂i be the result of running a regression

of y on x using only unit i’s data without including z. The coefficient β̂i is the solution to the least
squares problem β̂i = (x ′

ixi )
−1(x ′

iyi ). Substituting the structural equation for y and some algebra
gives usthe usual omitted variable bias (OVB) expression:

E(β̂i ) = βi + γi
Cov(xi , zi )

Var (xi )︸          ︷︷          ︸
OVB

(3)

This illustrates an important difference between prediction and evaluation problems [2, 5, 35, 49]:
xi β̂i is the best unbiased linear predictor of yi but is not an estimate of the causal effect. In fact,
when the covariance between x and Z , and y and Z is high, β̂ can be an extremely biased estimator.

2.2 Rank-ordering from observational data
Observational estimates (although potentially biased) can be used to inform a prior about heteroge-
neous treatment effects. In particular, suppose that there are two units i , j with β̂i > β̂j .When does
does this mean that βi > βj? We refer to this as observational heterogeneous effects being rank
unbiased.
When rank unbiasedness holds, β̂i is a sufficient statistic for targeting constrained programs

(e.g. when the analyst can only afford to implement certain design to a limited percentage of the
population). This also means that if we can learn a function д(·) which maps covariates ci to β̂i ,
then this function will be a monotonic transformation of the true heterogeneous effects function
f (·).
It is easy to see from equation 3 that a sufficient condition for rank unbiasedness is that

Cov(xi , zi )

Var (xi )
γi >

Cov(x j , zj )

Var (x j )
γj .

A perhaps slightly more enlightening statement for the condition is to ask when the correlation
between β̂ and β is positive. This can be formally expressed as

EC’19 Session 2b: Online Platforms

202



Corr (β, β̂) = Corr (β , β +ψγR) =
Cov(β, β +ψγR)√

Var (β)Var (β +ψγR)
=

=
Var (β) + R ∗Cov(β ,ψγ )√

Var (β) ∗ (Var (β) + R2 ∗Var (ψγ ) + 2R ∗Cov(β ,ψγ ))
(4)

Where R ≡
σ 2
Z

ψ 2σ 2
Z+σ

2
ϵ
and for simplicity we denote as fixed. Although the expression depends on

β,ψ ,γ and their covariances, individualizing each effect is not straightforward.

2.3 An Example
The equations above are not straightforward to understand. We now give an economic model
relevant to online behavior to help give intuition about the conditions. This simplified example
will be the motivation for one of our later experiments. We first re-write our omitted variable
bias equation substituting in the covariance and variance of various variables from our structural
equations assuming unit variance for all variables to reduce notation

β̂i = βi +
γiψi

ψ 2
i + 1

.

Consider an online social news aggregator with users i . Each time period t each user receives
utility yti from the platform as a function of many things, including how many articles are available,
how much discussion their friends engage in, etc...

An analyst is interested in the effect of one particular variable: for which individuals does having
more articles to read available on a given day (x ti ) improve their experience most? We assume that
the analyst observes a good proxy for y and x .
Users differ in their affinity to the platform and there is a daily shock zti which is unobserved.

The shock can be thought of as the ‘newsworthiness’ of a day. This shock affects baseline demand -
this is γi in our structural equations above. In addition, this affinity affects the amount of articles a
user has available to read on a given day, akaψi in our equations.

We assume that higher affinity implies higher βi . Now, our equations are simpler to understand.
Consider fixing a user i and a counterfactual experiment of increasing their baseline affinity. This
should increase βi , γi , andψi . If this increase in affinity increases γi by more than it increasesψi ,
then from our equation we see that omitted variable bias will increase. Thus, β̂i will also increase
whenever βi increases.

In this example, such an effect seems reasonable: there are many features that affect how
newsyness of a day affects demand for the news aggregator (e.g., how many friends will also discuss
the news on the platform). A higher affinity affects all of them. By contrast,ψ only captures the
impact of z through article supply, a much smaller channel.

3 EXPERIMENT 1: SIMULATION
The conditions discussed above are sufficient conditions for rank unbiasedness to hold. Necessary
conditions are slightly harder to write down and make sense of. For this reason, we now investigate
whether rank unbiasedness holds in a simulation study.

We generate unit data following structural equations (1) and (2). For each unit we draw (βi ,ψi ,γi )
from amultivariate normal with expected value (µβ , µψ , µγ ) and covariancematrix (σβ,ψ ,σβ,γ ,σψ ,γ ).
We set T = 30 days, N = 50 units, 100 replications. We ask whether β̂ estimated from running unit
level regressions correlates with the true β .
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Fig. 1. Rank correlation

Notes: Results obtained from a Monte Carlo simulation where each user’s (βi , ψi , γi ) is drawn from a multi-
variate normal with expected value (µβ , µψ , µγ ), variance 1, and covariance matrix (σβ ,ψ , σβ ,γ , σψ ,γ . Panel (a) shows
the baseline case where µβ , µψ , µγ = 0. Panel (b) shows a ‘realistic’ case where (µβ , µψ , µγ ) = (0.5, 0.5, 0.75). Panel
(c) shows an ‘adversarial’ case where (µβ , µψ , µγ ) = (0.1, 0.1, −2), such that the correlation is usually poor. We note
that these are selected examples for exposition purposes; results remain qualitatively the same under similar ranges of
parameters.

Figure 1 shows the relationship between the parameters’ covariance and the rank correlation
between β and β̂ (color scale). For instance, a top right edge shows the rank correlation, ρrank (β̂, β),
for the case where β ,ψ ,γ are positively correlated. We discuss the simulation results from three
scenarios. We start with a baseline case where (β,ψ ,γ ) are mean 0 and variance 1. Panel (a) in
Figure 1 shows that the rank correlation is overall very stable across the covariance space, usually
above 50%.

Panel (b) presents a realistic case, one in which β andψ are positive but there is a higher expected
value for γ , µγ , to illustrate a user demand that is mostly driven by some unobserved feature Z .
A high rank correlation (in red) means that a high β̂i predicts a high true βi . Although β̂i can be
biased (in general overstating the effect from xi ), overall we find a reasonable rank correlation.
And it is highest when the covariance is positive (top-right corner), because β̂ also captures more
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variation coming from Z and this is accentuated when β is also large. For instance, upward bias in
nonexperimental studies is frequent when measuring advertising returns under activity bias, or
when measuring schooling returns under ability bias [2, 9, 39]. This correlation breaks up when
all covariances are negative (bottom-left corner), because when unobserved Z is large, users with
large γ will have low β but high β̂ (i.e. downward, negative bias).

So far we have seen that, across different covariances, the rank correlation is usually high, above
30%. However, this is not guaranteed to be the case for all types of data generating processes. If we
continue to assume that user data is simulated through structural equations (1) and (2), what does
it take for observational estimates to fail to predict true heterogeneity? Surprisingly, we find that it
is difficult to construct covariance structures where observational estimates are ‘inversely related’
to causal estimates, and therefore rank correlation is low or incorrect.

We set µβ , µψ , µγ ∈ (−2,+2) and search the parameter space to yield low rank correlation. Panel
(c) shows an adversarial case where this correlation is usually poor, and observational estimates
fails to predict true heterogeneity. These correspond to µβ = µψ = 0.25 and µγ = −2. However, it is
worth discussing what these actually mean in practice. Such parameters imply that the variable
of interest x (e.g. ads, online contents, ranking feature) has a low effect on demand, which is
reasonable, but at the same that there is an unobserved factor, Z , that has a large negative effect.
Under these conditions, for example when σβ,ψ is positive, then the rank correlation is close to 0.
Why? Consider two users i, j such that βi < 0 < βj but have otherwise similar parameters. Since i
and j experience similar x but γ is negative and large, we will tend to estimate β̂i > 0 > β̂j , which
is precisely the inverse rank order. This is because β̂ corrects the sign to explain for the demand
shock Z . Note that for this extreme choice of parameters σβ,ψ dominates the effect on the rank
correlation.

−0.4 −0.2 0.0 0.2 0.4 0.6 0.8

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

bias size

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●●
●

●

●

●

●

●

●

●

●●●

●

ρrank(β̂, β)
ρPearson(β̂, β)

Fig. 2. Bias size

Notes: Size of the observational bias, and simple/rank correlation (between users’ estimated β̂ and true β ).
Same simulation as Panel (b) where (µβ , µψ , µγ ) = (0.5, 0.5, 0.75)

Finally, we also find that Spearman’s rank correlation is less sensitive to outliers and higher than
the simple correlation coefficient. See Figure 2. This suggests that, even though an observational
bias (or simple correlation) can be large (small), the rank-ordering between observational and
experimental estimates can remain very high. In other words, users’ observational β̂ can potentially
be subject to a consistent (upwards or downward) bias, while it maintains the same experimental
rank-ordering.
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4 EXPERIMENT 2: FACEBOOK PAGE RECOMMENDATIONS
4.1 Experiment Details
We now discuss the use our approach to a large scale ranking recommendation problem at Facebook.
We are interested in estimating users’ heterogeneous response to page recommendations in order
to better customize Facebook’s News Feed. We first describe the problem.
The Facebook social network has about several billion monthly active users. Users each have

content available to them for view. The News Feed is an individualized ranked list of content
including status updates, photos, videos, links, app activity, and likes from people, pages and groups
that users follow on Facebook.

Pages are non-user entities on Facebook than can post content (e.g. organizations, blogs, certain
celebrities). Users can ‘Like’ a page to connect to it: liking a page makes posts created by this
page eligible to appear in the user’s News Feed. Page content corresponds to a portion of content
individuals can view on their News Feed.
Helping users connect to the right pages can greatly improve their experience on the site. A

personalized Facebook recommendation is used to suggest relevant pages to users. In practice,
these recommendations show up in a user’s News Feed in the form of ‘Pages You May Like’ units.
See Figure 3 for a visual example.
However, facilitating these connections is costly. There is an opportunity cost, because each of

the ‘Recommended Pages’ takes up some space on the News Feed, and there is also a user experience
cost, because users who do not want more connections can be inconvenienced with unnecessary
recommendations. Therefore, our question of interest is not which page should we suggest as in
standard recommender systems [8]. Rather, we ask: which users’ experience will benefit the most
with additional page recommendations [16, 45]?

Here we interpret structural equations (1) and (2) as follows. We define the outcome variable or
user demand, yti , as user’s i measure of engagement with the platform on day t , on either a desktop
or mobile device.

As measures we simply use time spent on the platform. We note this is a crude measure of user
demand but is sufficient for the purposes of this paper and that other measures of engagement
give qualitatively similar results. We let x ti as user i’s page inventory supply at time t . The page
inventory of user i is the number of posts made on a given day by all pages that she or he is
connected to (i.e. has selected to be a fan of). Adding more page connections will (stochastically)
increase page inventory levels. Recall that x ti varies from day to day because some days experience
more events than others, and therefore pages produce more content. Importantly, a user may not
necessarily view, or engage with, all of her or his page inventory.

Our observational analysis will be confounded by many unobserved confounders including time
varying affinity for the platform from each user as well as unobserved shocks that jointly increase
activity in individuals and pages (creating more page inventory).
During Fall 2015 Facebook tested a new type of recommendation system which could show a

‘representative’ post from a page in a user’s News Feed (with the header ‘Recommended For You’).
The eligible ‘Recommended For You’ recommendations were obtained from a pool of user-page
pairs which had very high similarity scores according to Facebook’s standard recommender system.
To evaluate whether these units improved user experience, Facebook performed a controlled

version testing on randomly chosen users. From the approximately 8 million people who were
eligible for this test (eligibility required that the underlying recommender system be confident in
their suggestions of potential new pages), close to 400,000 were randomly chosen to see these new
recommendation units. We use a control group of 8 million individuals who were eligible but did
not see the new unit.
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Fig. 3. An example page recommendation unit on Facebook from 2014.

To define the unit-level covariates, c , we use a large set of variables that are generally useful in
the platform’s machine learning systems [20, 25, 29]. For instance, user time-constant covariates
(geography, age, operating system), network-related metrics (number of friends, URLs), and past
engagement measures.

4.2 Estimating Observational Heterogeneity
We estimate observational treatment effects using a large user-level dataset. We take a random,
deidentified panel of 120 million Facebook users. We consider 60 days of data per individual. We
then compute β̂i for each of the users by running user-level panel regressions on 60 days of (yti ,x

t
i )

pairs. Due to the fat-tailed nature of y we use a log transformation. This yields our set of user-level
coefficients β̂i .

To be able to generalize our estimates to individuals outside the sample we train a model predict
an individual’s β̂ from ci . We refer to this as д̂(ci ). Due to outliers, skewness, and noise in the
estimates of β̂ that often occur with sparse data, we instead use a version of quantile regression [2].
Here we report the results of a classifier which assigns a label of 1 to those users whose estimated
β̂i is in the top 20% of all estimated β̂i , and 0 otherwise.

We found this to be useful for both reducing noise and increasing interpretability of how well the
procedure is performing since a classification problem also allows us to evaluate the performance of
the machine learning in terms of AUC (which for ranking is more interpretable than MSE). We used
what was, at the time, the default Facebook machine learning system, based on gradient boosted
decision trees as feature transformers followed by a final linear layer to train a classifier using
these features. See [29] for implementation details. We achieve an AUC of approximately ∼ .78.
This trained classifier estimates our function д̂(·). Note that the output of the classifier is the

probability that a user with covariate profile ci is in the top quantile of the treatment effects, this
gives us an ordering of individuals that we can compare to randomized estimates.

4.3 Estimating Experimental Heterogeneity
We now evaluate the extent to which these observational estimates predict treatment effects in
randomized data. We take y, is defined as overall time spent during 1 week of the experiment.
We transform the variable taking natural logs and reduce variance by difference-out 1 week of
pre-analysis engagement per user. That is, the outcome becomes ∆y instead of y. Because y is
highly autocorrelated and right-skewed, these two transformations increase statistical power.
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Fig. 4. Rank-ordered relationship between the actual treatment effect and the predicted treatment effects
(probability of being in the top 20%).

We now ask ourselves the following. Is there an increasing relationship between our д̂(c) and the
actual treatment effect? Figure 4 shows that this is indeed the case. Stratifying the testing population
by predicted treatment effects, we find an increasing and monotonic relationship between д̂(c) and
the actual controlled treatment effect. As usual, the latter is computed as the average difference
between treatment and control groups. Note that the error bars are quite large because even though
there are approximately 8 million people in the control group, there are close to 400,000 people in
the treatment group and the analysis involves a very small change in the user experience. This is
consistent with the challenges of estimating economically meaningful magnitudes even in large
scale experiments [3, 38]. Moreover, the overall effect is relatively small as the treatment involves
inserting a single extra recommendation unit into users’ News Feed.

Variable Coefficient Standard Error

Intercept -.0316 .001***

Treatment Dummy -.0064 .0033*

Predicted Effect .2045 .002***

Predicted * Treatment .035 .01**

Regression of pre-post treatment change of log engagement on treat-
ment, predicted effect and the interaction. *** p<0.001, ** p<0.01,
*p<0.1.

Table 1. Regression table

Our results are reinforced in a linear regression. We regress experimental y on an intercept,
treatment dummy, predicted treatment effect, and the interaction of treatment dummy with obser-
vationally predicted treatment effect. We also control for the pre-analysis user-level y to reduce
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variance. We find a statistically significant interaction effect (p < 0.01) which confirms the visual
impression in Figure 4.

5 EXPERIMENT 3: RETURNS TO CAPITAL IN MICROENTERPRISES
Predicting the ranking of unit heterogeneity is best suited to estimation problems where the
researcher has experimental data together with observational data, possibly with high dimensional
covariates. This is often the case in online platforms where rich browsing user-level data can be
collected at any point in time.
We now consider a slightly different applications: development economics. Researchers in this

field often run comprehensive baseline surveys prior to launching a complete large scale, expensive
experiment [7, 19, 49]. These surveys help the researcher to gain preliminary insight into potential
pitfalls of the experiment, power calculations, logistics issues related to data collection, attrition and
non-compliance rates, useful covariates and outcome variables, all of which are better to address
before rolling out an experiment to the entire sample. In fact, experiments in development can cost
millions of dollars and often take months, or even years, to complete [7, 19, 42].
We consider the dataset of De Mel et al.. This work studies microenterprises in Sri Lanka and

tries to estimate the returns to capital. In the language of our structural equations, the outcome
variabley are enterprise profits, x is the enterprise’s capital stock. There is relatively comprehensive
covariate data on each of the microenterprises including (e.g. education, gender, age, family size,
assets, loans, ability measure, source of credit, industry, size).

Like many development economics experiments, this dataset includes a randomized trial where
extra capital is randomly assigned to microenterprises as well as an observational component of
baseline surveys conducted on 408 enterprises meeting the program eligibility criteria, including
regional areas, firms with invested capital below US$1,000, self-employed workers, and between
the ages of 20 and 65.

Following equations (1) and (2), the basic regression to be estimated is:

yti = α + µi + δt + x
t
i βi +O

t
i κi + η

t
i (5)

where yti is profits and x
t
i is capital stock for enterprise i at time t ; µi and δt are enterprise- and

time- fixed effects; and Ot
i are a set of observable covariates.

However, a grant randomization allows to break up this OVB because enterprises in the treatment
group who receive a cash grant are otherwise similar to those with no cash grant in the control
group. Thus this exogenous grant can be used as an ‘instrument’ to estimate the returns to capital.
In practice, this is estimated using two-stage least squares (2SLS). 2SLS is the ratio of the coefficients
from the ‘reduced form’ (regression of profits on the instrument) and the ‘first stage’ (regression of
capital stock on the instrument). See [2, 32] for additional details on instrumental variables.

We will use the baseline surveys along with these covariates to estimate the observational model
ignoring Z . Since we have a cross-sectional dataset, not a panel as in our discussion above we need
to perform a slightly different analysis. First, we discretize the continuous covariates into indicator
variables, which take the value of 1 if feature s for household i is above the median. For example,
ci,assets = 1 if household i has above median durable assets. Second, we interact capital stock, xi ,
with these household-level features. That is, we use the baseline survey to estimate a regression of
the form:

yi = α + xiβ +
S∑
s=1

ϕsxi ∗ ci,s +
O∑
s=1

ci,sκs + ηi (6)

where ci,s is observable covariate s for enterprise i; and s ∈ S, S ∈ O because we do not test all
possible interactions. To reduce over-fitting and multicollinearity, we interact the capital stock
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with four features: ability, english speaking, education, and assets. The parameter ϕs captures how
the effect varies with feature s . Note that there are no subindices t because the baseline survey is a
cross-section.
Therefore, instead of predicting an individual-level β̂i , we use the coefficients trained in the

observational data, to inform a prior of heterogenous treatment effects for those subgroups with
covariate profile c in the experimental dataset. That is,

β̂pred.(c) = β̂obs +
S∑
s=1

β̂obss ∗ ci .

Once we obtain the predictions β̂pred.(c) in the experimental sample, we stratify enterprises into
two groups: enterprises with predicted treatment effects above or below the median. We then
compare these predicted treatment effects with the actual 2SLS experimental estimates in each
group.1

(1) (2) (3)

Full sample Low β̂pred. High β̂pred.

2SLS

Capital stock 0.36 0.25 0.66

(0.11)∗∗∗ (0.12)∗∗ (0.24)∗∗∗

First stage

Treatment 0.33 0.41 0.18

(0.04)∗∗∗ (0.04)∗∗∗ (0.04)∗∗∗

Adjusted R2 0.69 0.70 0.65

Observations 2,620 1,652 968

Notes: Log real monthly profits as outcome, log capital stock
as endogenous variable, and grant amount as instrumen-
tal variable. Capital stock and profits are measured in Sri
Lankan rupees. All regressions include time and enterprise
fixed effects. Standard errors clustered at the enterprise-level
shown in parenthesis. *** p<0.01, ** p<0.05, * p<0.1.

Table 2. Heterogenous returns to capital

We find that enterprises with larger predicted treatment effects correlate with larger causal
treatment effects. The magnitudes, shown in Table 2, are qualitatively similar to [17]’s estimates of
returns to capital (see also their Online Appendix). The coefficients on the first stage show that
the grant is highly significant in instrumenting the capital stock. Column (1) shows that if we run
2SLS on the full experimental sample, we obtain a coefficient of 0.36 which implies a rate of return
of 5.25% per month. This point estimate is very close to that in Table IV in [17]. The estimates in
columns (2) and (3), 0.25 and 0.66, respectively, suggest large and significant heterogenous treatment
effects across households. If we examine the covariates that account for this heterogeneity we find
1Leave-one-out or repeated split estimators can also be used to stratify the sample to reduce in-sample overfitting [1].
This is beyond the scope of this paper. The predicted outcomes are not based on in-sample experimental controls; and
observational over-fitting tends to produce upward (downward) bias for low (high) predicted units, which would therefore
make the magnitudes in Table 2 conservative.
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that those in the group with higher predicted treatment effects have statistically larger values of
education, english speakers, ability, and assets.
Finally, these results complement [17]’s comparison of nonexperimental and experimental

estimates. Although in this study nonexperimental estimates of returns to capital can suffer from
attenuation bias (downward bias due to measurement error), our results suggest that observational
data can be used to find a prior on treatment effects heterogeneity across groups. Therefore, rich
observational data combined with experimental data can be used to increase statistical power or to
personalize programs when treatment is limited.

6 CONCLUSION
Estimating heterogeneous treatment effects is a particularly challenging problem when the set of
individual-level covariates is large and our priors about the important ones are weak. Moreover,
the magnitudes of treatment effects are often very small, and therefore even large scale controlled
tests can fail to find statistically significant results. Although controlled experiments will remain
the gold standard for causal inference, there are increasingly large observational datasets in online
platforms, policy, and health, which can be used to improve the personalization problem.
We suggest combining time series observational estimates with controlled testing to learn the

mapping from unit-level features to the size of the unit-level causal treatment effects. We show that,
when observational estimates preserve the rank ordering of individuals’ true heterogeneous causal
effects, these data can be used to construct a useful prior on heterogeneous treatment effects. These
estimates are informative to design a costly treatment when controlled analyses are unfeasible or
to facilitate the identification of heterogeneity.
In the main empirical application, Section 4, we use this approach to estimate heterogeneity

in users’ engagement with page recommendations at Facebook’s News Feed. We believe this is
particularly relevant to a broader class of problems in online platforms, where unprecedented
amounts of content need to be ranked and delivered to each user’s limited time and space interface.
And therefore improving the interaction with these contents can substantially improve the user
experience.
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