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a b s t r a c t

Are survey-based forecasts unbeatable? They are not. This paper uses online price indices
to forecast the Consumer Price Index. We find that online price indices anticipate
changes in official inflation trends more than one month in advance. Our baseline one-
month forecast outperforms Bloomberg surveys of forecasters, which only predict the
contemporaneous inflation rate. Our baseline specification also outperforms statistical
benchmark forecasts for Australia, Canada, France, Germany, Greece, Ireland, Italy, the
Netherlands, the United Kingdom, and the United States. Similarly, our quarterly forecast
for the US inflation rate substantially outperforms the Survey of Professional Forecasters.
© 2019 International Institute of Forecasters. Published by Elsevier B.V. All rights reserved.

1. Introduction

In 2016, the word inflation was mentioned in over
250,000 news articles, which amounts to more than 28
articles per hour.1 It is hardly questionable that improving
our abilities to anticipate the inflation rate can benefit
a broad spectrum of relevant decisions, from macroeco-
nomic policies to hedging strategies, and to even financial
decisions of individual households. For instance, inflation
forecasts are key elements in the design of monetary pol-
icy (Bernanke, 2007; Yellen, 2017). New Keynesian mod-
els of optimal nominal short-term rate also depend on
expected inflation (Clarida, Gali, & Gertler, 1999; Wood-
ford, 2011). Even asset prices vary based on unexpected
inflation rate news (Gurkaynak, Sack, & Swanson, 2004;
Rigobon & Sack, 2004).2 Our current projection abilities,

∗ Corresponding author.
E-mail addresses: dapa@mit.edu (D. Aparicio),

mbertolotto@udesa.edu.ar (M.I. Bertolotto).
1 Retrieved from Google News as of August 2018.
2 See, for example, the movements in the treasury yields described

in Boesler (2016).

however, are still limited and our forecast errors are too
large.3

Survey-based inflation forecasts, which average pre-
dictions from multiple economics experts, have been con-
sidered the best inflation forecasting tools since Ang,
Bekaert, and Wei (2007)’s work on the subject and were
further reinforced by Faust and Wright (2013). Other fore-
casting methods were held back because they depended
on regressions that used variables which accurately pre-
dicted the inflation rate in some stages of the economic
cycle but not in others.4 In this paper, we find that
online prices collected from retailer websites are even
more effective tools for predicting the future level of
the Consumer Price Index (CPI) than previous models.
Online price indices use data that is representative of
retailer transactions and screen, on average, over 700,000
varieties of products on any given date. Additionally, these
indices track consumer prices from mostly the same eco-
nomic sectors as the traditional CPI, which allows them

3 For instance, the mean absolute error of the one quarter inflation
forecast annualized) from the median Survey of Professional Forecast-
ers (SPF) in the United States is around 1.4 percent when the CPI
fluctuates in the −1.4 to 2.2 percent interval 70 percent of the time
(estimates using data from the first quarter of 2009 through the second
quarter of 2016).
4 See Stock and Watson (2003) for a detailed explanation.
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to closely move together with the CPI despite economic
fluctuations.

We first forecast the CPI inflation rate one month in
advance and subsequently calculate the two- and three-
month-ahead forecasts. We find that parsimonious mod-
els using online price indices are more accurate than the
survey of professional forecasters published by Bloomberg.
In addition, these online models are more accurate than
traditional benchmarks such as the AR(1), the random
walk (RW), and the Phillips curve. These findings are
robust to multiple specifications, and across all ten coun-
tries in our data, namely the United States (USA or US),
United Kingdom (UK), Australia, Canada, France, Germany,
Greece, Ireland, Italy, and the Netherlands. To our knowl-
edge, this is the first study to show that online prices
are a good predictor of changes in the CPI in multiple
economies. Details about these series, as well as their
advantages, are explained in Section 2.

These online indices are calculated at a daily frequency
and published with a three-day lag. By the end of any
month, we already know the monthly inflation rate in
the online market, two weeks before the statistical of-
fice’s publication of the CPI. These advantages in both
timing and frequency boost the predictive value of the
online series. However, we show that even after removing
these advantages online indices still predict the CPI more
accurately than the forecasting benchmarks. We provide
preliminary explanations for why this anticipation might
occur and discuss possible areas for future research.

Finally, we calculate a quarterly inflation forecast for
the United States and evaluate its performance against
the Survey of Professional Forecasters (SPF). We find that
models using online price data substantially outperform
this survey, which is considered one of the leading fore-
casting benchmarks in the literature.5

The paper is related to a vast body of literature about
inflation forecasting. The methods employed in this field
are diverse, ranging from VARs (Ang et al., 2007; Clements
& Galvão, 2013; Marcellino, Stock, & Watson, 2003), dy-
namic factor models (Eickmeier & Ziegler, 2008; Forni,
Hallin, Lippi, & Reichlin, 2003; Stock & Watson, 2006),
artificial neural networks (Chen, Racine, & Swanson, 2001;
Nakamura, 2005; Stock & Watson, 1999a), Bayesian meth-
ods (Wright, 2009), Phillips curve forecasts (Atkeson &
Ohanian, 2001; Stock & Watson, 1999b), to survey-based
forecasts (Ang et al., 2007; Bates & Granger, 1969; Cec-
chetti, Hooper, Kasman, Schoenholtz, & Watson, 2007;
Croushore, 2010). The list is far from exhaustive and ex-
emplifies how active and relevant the field remains. Com-
prehensive literature reviews on the subject can be found
in Faust and Wright (2013) and Stock and Watson (2009).

Our work is also related to the rapidly growing field
of literature using online prices to research diverse eco-
nomic topics. The ability to collect thousands of product’s
prices at a fine granularity, from across the globe, and on
a daily basis provides researchers unprecedentedly rich
datasets to re-examine both macro- and microeconomic

5 See Ang et al. (2007) and Faust and Wright (2013) for further
details.

theories. Several recent papers have studied the relation-
ship between online and offline markets, including Cav-
allo (2019), Gorodnichenko and Talavera (2017) and Lün-
nemann and Wintr (2011). However, to our knowledge,
there has been no paper that uses online prices to fore-
cast official inflation measurements. The closest examples
are Bertolotto (2018) and Cavallo (2013) who show that
online indices approximate the levels and trend dynamics
of official inflation rates in multiple countries; and Apari-
cio and Cavallo (2018) and Cavallo and Rigobon (2016)
who use online prices to measure country-level inflation
rates. These result can also be understood as a validation
of the notion that online-based price indices are compa-
rable to the traditional CPI despite their methodological
differences.

Lastly, the daily frequency of online indices studied
in this paper relates to a strand of literature using other
high-frequency market-based indicators of inflation ex-
pectations, as in Gürkaynak, Sack, and Wright (2010)
or Haubrich, Pennacchi, and Ritchken (2012), and to mod-
els that combine different data frequencies such as Ghy-
sels, Santa-Clara, and Valkanov (2004), Knotek and Za-
man (2015), Modugno (2013) and Monteforte and Moretti
(2013).

The paper is organized as follows. Section 2 describes
the datasets used, and Section 3 argues that online in-
dices should improve our forecasting accuracy. Section 4
describes the forecasting methodologies, and presents
the monthly and quarterly out-of-sample inflation fore-
casts. Section 5 discusses potential reasons for why on-
line prices can anticipate the traditional CPI. Section 6
concludes.

2. The data

This section describes the datasets used to evaluate the
forecasting accuracy of online prices in Australia, Canada,
France, Germany, Greece, Ireland, Italy, the Netherlands,
the UK, and the US from July 2008 to September 2016.

We are interested in forecasting the monthly non-
seasonally adjusted Consumer Price Indices, for all urban
consumers, calculated by each country’s national statisti-
cal office (NSO). In the case of Australia, where the Bureau
of Statistics does not calculate a monthly CPI, we use their
quarterly measurements instead.

We use online indices provided by PriceStats, a private
company that spun off from the Billion Prices Project
(BPP)6 at MIT. These series have been designed to mea-
sure each country’s aggregate inflation rate. Their daily
frequency is an advantage over other measures used to
forecast the CPI because it helps capture changes in in-
flation trends before the end of the month. A second
advantage is their immediate release. Statistical offices
usually publish their new CPI measurements for each
month around the 15th day of the following month. On
the other hand, the monthly inflation rate for the online
price index is available immediately, giving it a 15-day

6 See http://www.thebillionpricesproject.com/ and Cavallo and
Rigobon (2016) for additional details on the BPP and the scraping
methodology.

http://www.thebillionpricesproject.com/
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Fig. 1. Online index anticipation. Note: This figure provides a graphical illustration of the anticipatory effect of the online price indices.
Source: Authors using online indices computed by PriceStats and the Consumer Price Indices, non-seasonally adjusted, all items, from the
National Statistical Offices of the UK and Australia.

lead over the official release. These advantages are more
pronounced in countries like Australia, where the official
inflation rate is released once per quarter instead of once
per month. Even though the online index only covers a
fraction of product categories included in the statistical
office’s CPI, it includes prices from a larger number of
goods and varieties within each category, and provides
similar estimates to the aggregate CPIs (see Cavallo, 2013).
Other differences between the online and offline price
indices, such as the treatment of missing prices or product
substitutions, are discussed in Cavallo (2019).

The methodology used to construct the online price
indices can be summarized in three steps: data source
selection, data collection and aggregation. The starting
point is to select the retailers to sample. This decision is
driven by PriceStats needs to get prices that are repre-
sentative of retailer transactions. Therefore, the company
focuses almost exclusively on the largest players in the
market that sell both offline and online. These retailers
concentrate the majority of the online transactions and
actively manage their websites. On average, a retailer
changes its prices two times per week.

In the second step, web-scraping software parses a
retailer’s public HTML7 code and collects details for each
product, such as the price, description, brand, and size.
The retailer assigns a unique identifier (ID) to each good,
which is constant over time. This ID is also collected and
allows the algorithm to build a panel dataset, with mil-
lions of product-level prices per day. Online prices include
the VAT tax and exclude transportation costs to match as
closely as possible the price used in the traditional CPI. By
the same token, the indices exclude out of stock items. In
the third step, the price changes from multiple retailers
are aggregated into a unique country price index using CPI
weights. While the aggregation methodology is similar to
the methodology used by the NSOs, we dedicate the last
section of this paper to explain the main differences that
lead online prices to anticipate their offline counterparts.

Some of the models addressed in this paper include
two additional datasets. The first relates to offline gasoline

7 HTML stands for Hyper Text Markup Language.

and diesel prices from weekly surveys conducted in each
country. These prices include excise taxes and sales/VAT
taxes, and are published with a one-week delay, a timing
advantage that is hard to find in other sectors included in
the CPI. We use these surveys because Knotek and Zaman
(2015) shows that they outperform the most advanced
forecasts in the literature, even using parsimonious re-
gressions. Second, we include a Phillips Curve model in
the paper using the seasonally adjusted unemployment
rate from IHS Economics.

We compare the accuracy of the monthly online fore-
cast against the survey of forecasters provided by
Bloomberg. Additionally, we compare the quarterly fore-
cast accuracy against the Survey of Professional Forecast-
ers published by the Federal Reserve Bank of Philadelphia.

Throughout the paper, we define the inflation rate as
follows,

pt = 100 ∗ ln
Pt

Pt−1
(1)

where Pt and Pt−1 denote the price index in period t and
the previous period t − 1.

3. Predictive ability of online series

This section suggests that online price indices are use-
ful indicators for forecasting the CPI. First, we visually
compare the CPI and their online counterparts. Second,
we show the anticipatory effect of the online series by
calculating the time required for a shock to the online
index to be reflected in the CPI. Third, we show that
the online series explain a significant proportion of the
CPI’s variability even after controlling for other macro
variables.

Fig. 1 illustrates how online prices anticipate major
changes in the trend of the official inflation rate. The
online UK index started falling on December 10, 2014, as
can be seen in graph 1.a. One month later it had already
dropped by 1.2 percent; however, on January 13th the
December release from the NSO showed no change to the
CPI. When the January reading was released on Febru-
ary 17th, the index finally registered a 0.9 percent drop,
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giving the online index a nearly two-month lead against
the official CPI. The online price index stopped falling in
January and started increasing once again, but the CPI
did not show this change in trend until the estimates for
February were published on March 24th. Fig. 1.b shows
similar anticipation in Australia. The online index showed
an uptick in its inflation rate in May of 2015, but the
CPI did not reflect this increase until the second quarter’s
inflation rate was published on July 22nd. Similar antici-
pation patterns can be seen in most of the online series,
which are displayed in Appendix A.1.8

We next compute impulse response functions (IRFs),
which show the effect of a one percentage point shock
in the online inflation rate on the CPI’s inflation rate,
holding all other variables constant. To this end, we cal-
culate a vector autoregression (VAR) for each country,
where the online data is taken as the exogenous variable.
This is equivalent to estimating an autoregressive dis-
tributed lag (ADL). We complement the analysis with 95
percent confidence bands computed by block bootstrap-
ping9 and Hall (1992)’s percentile-interval method.10 The
model is defined as follows,

pt = α +

i=n∑
i=1

βt−i pt−i +

i=n∑
i=0

γt−i ot−i + ϵt (2)

where Eq. (2) includes i = 1, 2, . . . , n lags of offline, pt−i,
and online, ot−i, aggregate monthly inflation rates, plus
the contemporaneous value of online inflation rate (ot ).
We run the model in varying lag lengths before choosing
n = 6 lags according to the Akaike’s final prediction error
(FPE) and Lütkepohl (2005)’s lag order selection criteria
(HQIC).11

The IRFs in Fig. 2 show that shocks to the online
indices are slowly incorporated into the CPI, suggesting
an anticipatory effect of online prices. All country IRFs
are statistically significant, and the CPI takes one-to-five

8 Ireland’s online index disserves a special mention since it shows
the largest discrepancy with the CPI. The official series show a marked
seasonality, where prices increase significantly in March and April, and
September and October, and decrease in February and August. Such
seasonality is mostly due to its dynamic apparel sector, which varies
prices according to the season. While the online index captures the
deflationary months, it has failed to capture the full extent of the
seasonal price increases. While our dataset is not disaggregated enough
to explain this phenomenon fully, we believe that apparel retailers
in Ireland change the ID of each good after the season is over. As
a consequence, the online index captures the large price decreases
when the goods become on sale and ultimately on clearance, but fail to
capture the increase when the same or a similar model is introduced
into the market at a higher price the next season.
9 See Hongyi Li and Maddala (1996) for details about the

methodology.
10 Residual-based bootstrapping based on Benkwitz, Lütkepohl, and
Wolters (2001) yields tighter bands, but may not control for the serial
correlation of the series.
11 We run this exercise in STATA. We estimate the coefficients
in Eq. (2) using the ‘‘var’’ module, specifying that the online aggregate
monthly inflation rate is exogenous. After that, the IRFs are calculated
using the ‘‘irf’’ command. We account for the serial correlation of the
series calculating the confidence bands by block bootstrapping. The
number of bootstrap iterations is 200, but the results do not change
running the exercise with 500 iterations.

months to react to a shock in online inflation.12 Moreover,
the results hold when we remove the contemporane-
ous observation of the online price indices, suggesting
that their predictive content goes beyond their immediate
release to the public.

The IRF analysis does not control for other economic
variables. Therefore, we further evaluate the explanatory
power of the online series with offline fuel prices, which
have been found relevant predictors of the CPI in re-
cent times (e.g., Knotek & Zaman, 2015). To this end, we
sequentially partial-out from the CPI the effects of its
lagged values, of fuel, and of the online series, and then
observe the R2 of these regressions. That is, first, the CPI
is regressed against its lags. Then, the residuals of that re-
gression are explained by fuel prices. Finally, the residuals
of that second procedure are regressed against the online
index. An R2 that is higher than zero in the last regression
is taken as evidence that the online index is a valuable
source of information to predict the CPI’s inflation rate.
The R2 in the last regression describes the share of the
remaining variance (after partialling-out the offline and
fuel prices) explained by the online price index.

Notice that this decomposition runs strongly against
the online index since we are allowing the CPI inflation
to be fully explained by its own lagged values and also by
fuel. In other words, the explanatory power derived from
online prices is at the lowest bound of their information
content. Bring (1996) shows that the more correlated the
variables are, the lower the importance assigned to the
last partialed-out regressor. Although not shown in this
paper, by reversing the order of the regressions we find
that the CPI and fuel explain little compared to the online
series.

The horizontal lines on Fig. 3 show the in-sample
decomposition for the entire time series, using six lags
in each of the regressions, for Australia and USA. The
time-varying lines depict the decomposition in a rolling
window of 24 months,13 also using six lags. The rest of
the countries are plotted in Appendix A.2.

In all countries, the online aggregate price index ac-
counts for 4 to 20 percent of the CPI’s variability in the full
sample. In many countries, the fuel series increase their
contribution through time, which is expected given the
recent context of very low inflation rates and large shocks
in fuel prices.

4. Forecasting inflation using online prices

This section presents the forecast exercises. We start
by describing the methodology. Section 4.2 shows the re-
sults from one- to three-month-ahead inflation forecasts,
and Section 4.3 shows the quarterly predictions of the US
inflation index.

12 We complement the IRF analysis by running a Granger causality
test (see Granger (1969) and Lütkepohl (2005)). The idea behind this
test is that if the online series leads their offline counterpart, the
former should improve the prediction of the latter. More formally, we
estimate the coefficients in Eq. (2) and test the null hypothesis that the
coefficients on ot−i are jointly zero. The test rejects the hypothesis that
online prices do not Granger-cause the offline series with a 1 percent
significance level for every country in the sample.
13 Results remain qualitatively similar using alternative lag and
window lengths.
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Fig. 2. Impulse responses - One percent shock to the Online price index. Note: The solid line in each graph is the impulse response functions of
a one percent shock to the online price index on the consumer price index for a particular country. The shaded areas represent the 95 percent
confidence intervals of the impulse response, calculated by block bootstrapping. All series are non-seasonally adjusted.
Source: Authors.

4.1. Forecasting models

We forecast the one-month ahead CPI inflation rate as
follows,

Et−1 pt = α̂ +

p∑
i=1

β̂t−i pt−i +

p∑
i=0

θ̂t−i ft−i +

p∑
i=0

γ̂t−i ot−i

+

p∑
i=0

η̂t−i oft−i (3)

where pt , ft , ot and oft are the CPI, offline fuel, online
aggregate, and online fuel inflation rates in period t . We
take advantage of the daily frequency in online prices
by forecasting the inflation rate in t using data through
the 15th of month t − 1, one month in advance of t ’s

CPI release. For example, to forecast the official inflation
rate for February, we use online prices through February
15th, and the official CPI rate on January 31st, which
is released on February 15th. In other words, we build
the forecast with all data that is available on February
15th.14 The indices have been seasonally adjusted with
monthly dummy variables, except for Australia which
uses quarterly dummy variables.

We allow the data to speak for itself by calculating a
forecast for each combination of regressors in Eq. (3). For
example, the first model estimates β̂t−1 and sets θ̂t−i =

γ̂t−i = η̂t−i = 0. A second model estimates β̂t−1 and
β̂t−2, and sets all other parameters to zero. We calculate

14 Our results hold using data until the end of each month.
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Fig. 3. R2 Decomposition. Note: This figure shows the R2 of three sequential regressions. The horizontal lines represent full sample regressions, while
the moving lines show the R2 of a 24-month rolling-window estimation. The dotted-and-dashed line represents the first regression, CPI against
its lags. The residuals are regressed against fuel, and the resulting R2 is represented with the dashed lines. Finally, the residuals of that second
procedure are regressed against the online index, and the resulting R2 is depicted with the solid line. All series are non-seasonally adjusted.
Source: Authors.

every combination of values for the regressors so that the
last model estimates all parameters where no coefficients
are set to zero. Going forward, we define offline models
as those that include past CPI inflation rates, offline fuel
data, or both. Also, we define online models as those that
use any source of online data, such as aggregate inflation
indices, fuel prices, or both.

Our baseline specification is an equal-weighted av-
erage of forecasts using online data.15 We choose this
method because pooled forecasts have been found to pro-
duce more accurate results than ex-ante best individual
forecasts, as noted by Faust and Wright (2013), Stock and
Watson (1999a), and Timmermann (2006). The popularity
of surveys of professional forecasters provided by the
Federal Reserve Bank of Philadelphia and by Bloomberg
further confirm the accuracy of pooled forecasts.

The baseline specification competes with five bench-
marks. The first is an average of offline forecasts follow-
ing Model (3). This is the analogous specification to our
baseline, so any performance improvement against this
benchmark exemplifies the value of online price indices
as useful predictors of the CPI’s inflation rate. The second
comparison is against the survey of 1-month ahead fore-
cast published by Bloomberg, which is one of the most
well-known forecasts in the market. Finally, we calculate
three models commonly used in the literature: an AR(1),
a Phillips Curve, and a Random Walk. Details on their
methodology are found in Appendix A.3.

Two features need to be defined in our forecasting
exercises. (i) The in-sample or training window length
w. This defines the amount of data used to estimate the
parameters of the model. We set w to 24, 36, and 48
months, and take into account all single models based
on these windows in the averages.16 ,17 (ii) Whether the

15 There are presumably more efficient weighting schemes,
e.g. Bayesian averaging, shrinkage methods, inverse MSE weighting.
See Timmermann (2006) for a literature review on forecast
combination.
16 The window length in Australia is set to 8, 12, and 16 quarters.
17 A training window of 36 or 48 months yields very similar results.
A 24-month window produces slightly higher root mean square errors

estimation window is fixed or increases over time. An
increasing window-length uses all available information
through month t before forecasting t +1, whereas a fixed
window uses the same number of data points on a rolling
basis. Our baseline model and its offline equivalent take
into account both specifications.18

Additionally, we predict the CPI level two and three
months ahead. For example, we use all data available
until February 15 to predict the inflation rate of March
and April. These forecasts can be estimated directly or
indirectly. Indirect models predict the one-month ahead
inflation rate first and carry over this forecast to the
second month, and recursively iterate until the ith-month
ahead. Direct models, in contrast, forecast the ith-month
of interest without intermediate regressions. This paper
focuses on direct forecasts only.19

4.2. Forecast using monthly observations

Our baseline specification identifies the best perform-
ing individual models out of all combinations of regres-
sors from Eq. (3). In particular, we determine the top
100 best performers based on their individual root mean
square error (RMSE). Therefore, we calculate each indi-
vidual model and determine the top 100 best performers
based on their RMSE. For any given month, we average
the predictions of those models. The resulting forecast
is compared against the CPI analogously to the compar-
isons between the CPI and any single model estimated in
Eq. (3).

for all specifications, but results are qualitatively unaltered excluding
this window from the analysis.
18 The results remain unchanged removing the increasing or fixed
window length from the analysis.
19 Indirect forecasts impose significant modeling structure to the
online and fuel inflation data. While an AR(p) can iterate forward its
one-month ahead forecast until the ith-month, models with online or
fuel prices need to forecast the CPI and next month’s online and fuel
inflation rate. As indicated by Marcellino, Stock, and Watson (2006),
assuming too much structure tends to amplify forecast errors when
models are incorrectly specified.
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Fig. 4. Cumulative distribution of absolute value of errors. Note: This figure shows the cumulative distribution functions of the root mean square
errors of the models included in the pooled forecast. The solid line is the distribution based on models using offline data, and the dashed one
includes models using online indices.
Source: Authors.

Table 1 shows the RMSE of our baseline and competing
models. The results are summarized as follows. First, the
1-month ahead forecast using online series outperforms
the rest of the benchmarks in the sample. The online
model is on average 16 percent more accurate than the
offline benchmark, and 17 percent more accurate than the
survey of forecasters published by Bloomberg. We find
that the forecasting accuracy using online series is statis-
tically different from the rest of the models using Diebold
and Mariano (1995)’s test with a small sample adjustment
from Harvey, Leybourne, and Newbold (1997). However,
the time span of our series is short, so in some cases, we
may not find significant differences due to the low power
of the test. We further highlight the contribution of the
online indices using Stock and Watson (1999b)’s test.20

Second, the online price indices prove to be a useful
predictor of the CPI’s inflation rate even over longer time
horizons. The two-period-ahead RMSE is, on average, 8
percent smaller than its offline benchmark, and the three-
period-ahead forecast registers a 4 percent improvement
over the offline benchmark. The decrease in forecasting
advantage at longer time horizons is consistent with the
IRFs in Section 3, where the largest impact of an online
shock to the CPI occurs in the first two periods.

The quarterly frequency of the Australian forecast de-
serves a special mention because the online series have
a larger time advantage in this country than they do
in others. Therefore, we can calculate a 1-period-ahead
forecast three months before the official release. For ex-
ample, Australia releases the October-December inflation
rate around January 25th. On this date, we forecast the
January-March inflation rate, which is released on around
April 25th. Countries such as Greece and the Netherlands
show a higher RMSE than countries like Canada. These
European economies show a high amount of month-to-
month volatility, mostly due to seasonality in the clothing

20 The test regresses pt = λ f online
t−1 + (1 − λ) f benchmark

t−1 + et , where
ft−1 denotes the forecast of the CPI’s inflation rate, pt . The regression
suggests that the online index is a valuable source of information to
forecast the inflation rate when λ is significantly higher than zero.

Table 1
Root mean square error of monthly forecasts.
Source: Authors and 1-month-ahead survey of professional forecasters
published by Bloomberg.

Online Offline Survey AR(1) Phillips RW

1 month ahead
Australia 0.164 0.230 0.258 0.299 0.286 0.361
Canada 0.071 0.096 0.135 0.186 0.185 0.278
France 0.137 0.134 0.127 0.185 0.174 0.219
Germany 0.188 0.181 0.092 0.262 0.256 0.351
Greece 0.370 0.419 . 0.476 0.454 0.618
Ireland 0.129 0.141 . 0.176 0.254 0.217
Italy 0.097 0.121 1.253 0.176 0.143 0.202
Netherlands 0.144 0.179 . 0.284 0.276 0.306
UK 0.106 0.149 0.140 0.189 0.148 0.181
USA 0.081 0.085 0.096 0.200 0.285 0.244

2 month ahead
Australia 0.221 0.282 . 0.368 0.326 0.329
Canada 0.161 0.168 . 0.185 0.190 0.281
France 0.169 0.167 . 0.185 0.183 0.212
Germany 0.236 0.238 . 0.246 0.241 0.315
Greece 0.389 0.442 . 0.454 0.437 0.537
Ireland 0.159 0.160 . 0.176 0.248 0.218
Italy 0.135 0.135 . 0.181 0.134 0.193
Netherlands 0.172 0.227 . 0.293 0.276 0.314
UK 0.151 0.164 . 0.210 0.171 0.176
USA 0.193 0.195 . 0.210 0.253 0.310

3 month ahead
Australia 0.276 0.296 . 0.350 0.406 0.442
Canada 0.155 0.172 . 0.180 0.181 0.288
France 0.165 0.156 . 0.189 0.166 0.226
Germany 0.235 0.225 . 0.247 0.243 0.323
Greece 0.378 0.459 . 0.472 0.450 0.747
Ireland 0.158 0.162 . 0.181 0.226 0.219
Italy 0.129 0.131 . 0.169 0.132 0.175
Netherlands 0.256 0.285 . 0.301 0.283 0.379
UK 0.167 0.175 . 0.221 0.219 0.198
USA 0.212 0.203 . 0.213 0.211 0.309

Notes: Root mean square errors are expressed in non-annualized
monthly percentage points. Diebold and Mariano (1995)’s and Stock
and Watson (1999b)’s significance tests are shown in Appendix A.4.

sector, which is not shown in the online series. Provided
with a longer time span of testable data, the authors
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Fig. A.1. Online aggregate inflation indices. Note: This figure showcases the online price index next to the Conumer Price Index for each country.
Source: Authors using online indices computed by PriceStats and the Consumer Price Indices, non-seasonally adjusted, all items, from the National
Statistical Offices.

would add explanatory variables that correlate with the
seasonality of clothing to address this phenomenon. We
view the construction of more disaggregated price indices
as a promising area of future research.

The baseline specification could show a smaller RMSE
because either a few models perform extremely well,
compensating for others that perform poorly, or because
most of the models perform slightly better than those
that exclude online indices. We prefer the second scenario
because we are more likely to make small forecasting
mistakes independently of the models included in the
average. We calculate a cumulative distribution of the ab-
solute forecasting errors of the individual models included
in the baseline and offline benchmark. Fig. 4 shows that
online prices reduce the likelihood of making large fore-
cast errors in Australia and the US. The same result holds

for the rest of the countries, plotted in Appendix A.5. Fur-
thermore, the distribution of offline forecasts is stochas-
tically dominated by the online forecasts for 8 out of 10
economies.21

We find that the baseline specification is particularly
accurate when the offline benchmark cannot pick up the
CPI surprises. For each country, we keep the 50 percent
of the observations where the offline benchmark makes
the largest forecast errors (in absolute value). For this
subset of data, we estimate the forecasting accuracy of

21 The results hold when we include 20, 50, or 200 models in the
cumulative distributions. It also holds when we restrict the distribution
to positive or negative errors.



240 D. Aparicio and M.I. Bertolotto / International Journal of Forecasting 36 (2020) 232–247

Table 2
Root mean square error of quarterly forecast for USA.
Source: Authors and the Survey of Professional Forecasters published by the Federal
Reserve Bank of Philadelphia.

Online Offline SPF Mean SPF Median AR(1) Phillips RW

RMSE 0.429 0.806 1.677 1.785 1.198 1.968 1.575
D-M 0.002 0.000 0.000 0.008 0.000 0.000
S-W 1.165 1.251 1.236 1.016 1.086 1.048

(0.224) (0.215) (0.185) (0.123) (0.103) (0.084)

Notes: Root mean square errors are expressed in non-annualized monthly percentage
points. D-M shows the p-values of the null hypothesis of the online model presenting
similar predictive ability than each alternative model. The test is based on Diebold
and Mariano (1995), using a small sample adjustment from Harvey et al. (1997). S-W
represents the λ coefficient of Stock and Watson (1999b)’s test. This test suggests that
the online index is a valuable source of information to forecast the inflation rate when
λ is significantly higher than zero. λ’s standard errors are in parenthesis.

the online versus the offline forecasts. The baseline spec-
ification is statistically more accurate than the offline
benchmark for every country except France, Germany,
and the US.22 For example, in March 2015 the offline
benchmark predicted the inflation rate in the UK would
accelerate, reaching 0.32 percent. For the same period, the
online model predicted a deceleration, with an estimate
of 0.14 percent. When the CPI came out, the inflation rate
was 0.15 percent.

The conclusions of this paper do not change when
our baseline and main offline benchmark average the top
20, 50, or 200 models. Moreover, Appendix A.6 shows
that online prices are a useful predictor of the CPI even
after indiscriminately combining every single model from
Eq. (3).

4.3. Forecast using quarterly observations

This section presents a quarterly inflation forecast for
the US and compares its results to the Survey of Profes-
sional Forecasters released by the Federal Reserve Bank
of Philadelphia. We use the SPF survey because it is con-
sidered a leading source of medium-term forecast in the
US, and it is regularly monitored by the Federal Reserve
System.23 Evidence of this survey’s accuracy is discussed
in Ang et al. (2007), Croushore (2010), and Faust and
Wright (2013).

The quarterly forecast is constructed compounding the
one, two, and three-month ahead forecasts from a given
quarter of the baseline specification and then annualizing
the result. Similarly to Section 4.2, the online and offline
models are a pooled forecast of the 100 best models, but
we only include forecasts with an increasing window,
starting at 36 months.24 All series have been season-
ally adjusted using dummy variables as in the previous
section.

22 The number of observations used in this exercise is extremely low,
so we may not find significant differences due to the low power of the
test.
23 See, for example, Bernanke (2007) and Yellen (2017).
24 Results are similar using a 24 or 48-month window as well as
using a fixed time window.

Table 2 presents the out-of-sample RMSE for the quar-
terly forecasting exercise. The forecasts using online in-
dices substantially outperform the quarterly survey of
professional forecasters and the other benchmarks in-
cluded in this paper. Despite the small sample size, both
Diebold and Mariano (1995)25 and Harvey et al. (1997)
tests suggest that the results are significant at the 1 per-
cent level.

5. Why do online prices anticipate the CPI inflation?

The paper so far has shown that the online price in-
dices accurately predict the CPI’s values several months
in advance. This is a reasonable result since both indices
track prices from the same sectors of the economy, and
therefore should be highly correlated. To address this
point, Cavallo (2017) compares offline and online prices
and shows that the mean absolute size of price changes
is very similar in several countries. Some of the papers in
Section 2 expand further on this topic.

Interestingly, forecasts using online data are highly
accurate even after removing their timing advantage, sug-
gesting that pricing dynamics in the online market differ
from those in the offline market. Indeed, Cavallo (2017)
finds a 30 percent price difference between online and
offline retailers, which could arise from unsynchronized
pricing. These differences in reaction times between the
online and offline markets present an area of future re-
search, but we mention four factors that likely contribute
to the anticipatory feature of online prices.

First, retailers usually incur a cost to change listed
prices, and high costs can become a barrier to adjusting
prices frequently (Kehoe & Midrigan, 2015; Levy, Bergen,
Dutta, & Venable, 1997; Nakamura & Zerom, 2010). In a
comparison of offline and online retailers, Brynjolfsson
and Smith (2000) finds evidence that online stores change
prices in smaller amounts, suggesting lower menu costs
and less price rigidity. However, Cavallo (2019) docu-
ments that small price changes are not as common as
previously reported. The matter is far from settled and
the frequency of price changes may, in fact, be chang-
ing over time as online purchases become more pop-
ular and technology improvements make price changes

25 The test uses a small sample adjustment from Harvey et al. (1997).
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Table A.1
Root mean square error of monthly forecasts - One month ahead.
Source: Authors and 1-month-ahead survey of professional forecasters
published by Bloomberg.

Online Offline Survey AR(1) Phillips RW

Australia 0.164 0.230 0.258 0.299 0.286 0.361
D-M 0.019 0.288 0.001 0.002 0.005
S-W 0.813 0.666 0.868 0.922 0.901

(0.243) (0.003) (0.180) (0.188) (0.134)
Canada 0.071 0.096 0.135 0.186 0.185 0.278

D-M 0.000 0.000 0.003 0.002 0.005
S-W 1.034 1.093 0.870 0.872 0.911

(0.418) (0.001) (0.107) (0.109) (0.074)
France 0.137 0.134 0.127 0.185 0.174 0.219

D-M 0.295 0.190 0.002 0.002 0.006
S-W 0.663 0.255 0.999 0.986 1.135

(0.623) (0.095) (0.233) (0.227) (0.141)
Germany 0.188 0.181 0.092 0.262 0.256 0.351

D-M 0.254 0.000 0.032 0.020 0.000
S-W −0.276 0.125 1.007 1.041 1.097

(0.696) (0.161) (0.245) (0.255) (0.117)
Greece 0.370 0.419 . 0.476 0.454 0.618

D-M 0.000 . 0.002 0.008 0.008
S-W 1.754 . 1.574 1.317 1.199

(0.700) . (0.610) (0.587) (0.215)
Ireland 0.129 0.141 . 0.176 0.254 0.217

D-M 0.053 . 0.002 0.001 0.001
S-W 1.139 . 0.958 0.992 0.948

(0.379) . (0.180) (0.161) (0.120)
Italy 0.097 0.121 1.253 0.176 0.143 0.202

D-M 0.013 0.000 0.000 0.005 0.001
S-W 0.985 0.985 1.160 0.909 1.189

(0.325) (0.000) (0.207) (0.210) (0.130)
Netherlands 0.144 0.179 . 0.284 0.276 0.306

D-M 0.117 . 0.005 0.004 0.003
S-W 1.040 . 1.143 1.165 1.032

(0.376) . (0.203) (0.200) (0.144)
UK 0.106 0.149 0.140 0.189 0.148 0.181

D-M 0.014 0.045 0.000 0.001 0.000
S-W 0.908 0.773 0.858 0.860 1.141

(0.214) (0.000) (0.142) (0.121) (0.121)
USA 0.081 0.085 0.096 0.200 0.285 0.244

D-M 0.141 0.510 0.002 0.000 0.001
S-W 0.684 0.581 1.001 0.936 1.045

(0.310) (0.000) (0.071) (0.065) (0.059)

Notes: The table shows the root mean square errors (RMSE) of the
baseline and our main benchmark when the top 100 single models
in Eq. (3) are included in the pooled forecast. RMSEs are expressed in
non-annualized monthly percentage points. D-M shows the p-values of
the null hypothesis of the online model presenting similar predictive
ability than each alternative model. The test is based on Diebold and
Mariano (1995), using a small sample adjustment from Harvey et al.
(1997). S-W represents the λ coefficient of Stock and Watson (1999b)’s
test. This test suggests that the online index is a valuable source of
information to forecast the inflation rate when λ is significantly higher
than zero. λ’s standard errors are in parenthesis.

less expensive. However, it is still plausible that online
prices are less sticky than their offline counterparts, so
price changes should happen sooner online than in the
brick-and-mortar stores.

Second, when a product’s price is not available, the
surveying agent at the NSO directly compares the price
from the closest alternative product against the previous
price of the original good.26 If the agent finds a similar
product but does not consider it comparable, a hedonic

26 See International Labour Office (2004) for additional details on
standard NSOs methods on CPI’s.

Table A.2
Root mean square error of monthly forecasts - Two month ahead.
Source: Authors.

Online Offline Survey AR(1) Phillips RW

Australia 0.221 0.282 . 0.368 0.326 0.329
D-M 0.000 . 0.001 0.015 0.185
S-W 1.162 . 1.355 1.097 0.955

(0.546) . (0.329) (0.345) (0.232)
Canada 0.161 0.168 . 0.185 0.190 0.281

D-M 0.049 . 0.027 0.031 0.008
S-W 2.933 . 1.870 1.325 0.960

(2.036) . (1.118) (0.835) (0.234)
France 0.169 0.167 . 0.185 0.183 0.212

D-M 0.298 . 0.078 0.121 0.060
S-W 0.148 . 0.591 0.464 0.950

(0.483) . (0.421) (0.524) (0.190)
Germany 0.236 0.238 . 0.246 0.241 0.315

D-M 0.476 . 0.206 0.293 0.021
S-W 0.802 . 0.510 0.174 1.030

(1.388) . (0.509) (0.516) (0.196)
Greece 0.389 0.442 . 0.454 0.437 0.537

D-M 0.007 . 0.020 0.010 0.001
S-W 1.124 . 1.119 1.117 0.881

(0.458) . (0.510) (0.500) (0.218)
Ireland 0.159 0.160 . 0.176 0.248 0.218

D-M 0.271 . 0.083 0.004 0.005
S-W 0.946 . 0.842 0.940 0.992

(0.941) . (0.362) (0.244) (0.185)
Italy 0.135 0.135 . 0.181 0.134 0.193

D-M 0.434 . 0.023 0.397 0.035
S-W 0.747 . 0.866 0.631 1.027

(0.393) . (0.322) (0.413) (0.177)
Netherlands 0.172 0.227 . 0.293 0.276 0.314

D-M 0.116 . 0.014 0.016 0.001
S-W 0.782 . 1.089 1.117 0.903

(0.383) . (0.268) (0.266) (0.165)
UK 0.151 0.164 . 0.210 0.171 0.176

D-M 0.288 . 0.003 0.028 0.025
S-W 1.101 . 0.675 0.931 0.963

(0.262) . (0.251) (0.219) (0.186)
USA 0.193 0.195 . 0.210 0.253 0.310

D-M 0.082 . 0.014 0.007 0.000
S-W 0.843 . 0.790 0.794 1.048

(0.391) . (0.270) (0.275) (0.133)

Notes: The table shows the root mean square errors (RMSE) of the
baseline and our main benchmark when the top 100 single models
in Eq. (3) are included in the pooled forecast. RMSEs are expressed in
non-annualized monthly percentage points. D-M shows the p-values of
the null hypothesis of the online model presenting similar predictive
ability than each alternative model. The test is based on Diebold and
Mariano (1995), using a small sample adjustment from Harvey et al.
(1997). S-W represents the λ coefficient of Stock and Watson (1999b)’s
test. This test suggests that the online index is a valuable source of
information to forecast the inflation rate when λ is significantly higher
than zero. λ’s standard errors are in parenthesis.

regression removes the price differential associated with
the quality discrepancy between the products. When the
alternative product is not comparable, the price for that
period is assumed to change by the average price change
of comparable items. These indirect substitutions may
lead to delays in the reaction time of the CPI to recent
price updates. In contrast, as of the publishing date of
this paper, the PriceStats’ online indices calculate price
changes for identical items only.

Third, price changes may be reported late when the
‘‘different day pricing’’ methodology is applied.27 When

27 See Bureau of Labor Statistics (2015) for details.
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Fig. A.2. R2 Decomposition. Note: This figure shows the R2 of three sequential regressions. The horizontal lines represent full sample regressions,
while the moving lines show the R2 of a 24-month rolling-window estimation. The dotted-and-dashed line represents the first regression, CPI
against its lags. The residuals are regressed against fuel, and the resulting R2 is represented with the dashed lines. Finally, the residuals of that
second procedure are regressed against the online index, and the resulting R2 is depicted with the solid line. All series are non-seasonally adjusted.
Source: Authors.

a product is not available at the time of collection, its
previous price is eligible as a substitute, provided that the
item was available for sale in the last seven days. As a
result, the CPI may record price spikes one month after
they actually occur.

Finally, online anticipation can be amplified when
NSOs collect prices on a bimonthly frequency. For exam-
ple, the Bureau of Labor Statistics in the US collects prices
monthly for all items in the three largest publication
areas, but only collects prices bimonthly in the remaining
regions.28 This infrequent data collection schedule may
further delay the recording of price changes in the CPI.29

6. Conclusions

Our work introduces online price indices as a useful
predictor of the CPI’s inflation rate for many economies
and at multiple horizons. We use parsimonious models

28 See Bureau of Labor Statistics (2015) for details.
29 See also Hausman and Leibtag (2009) for a discussion on the
gradual introduction of new items and additional sources of bias in
the CPI.

that do not exploit the high frequency of the online se-
ries. However, when online prices are included, these
models outperform the most common benchmarks in the
literature as well as two leading surveys of professional
forecasters. We argue that these are reasonable results
since the CPI and the online price indices collect prices
from the same sectors of the economy and are therefore
closely correlated.

We discussed how inflation values from online series
are available earlier than the CPI’s, and that therefore
policymakers and industry practitioners alike can lever-
age them to include more recent information into their
models. Our analysis shows that even after removing this
timing advantage online prices still improve forecasting
accuracy, which suggests that those prices tend to move
before offline prices. Furthermore, we outlined how some
methodological procedures employed to calculate a CPI
may delay the recording of certain price changes, leading
to slower reaction times for offline series.

Our analysis suggests several areas that would ben-
efit from further research. First, online prices should be
included in forecasting models that take advantage of
their high frequency, such as those explained by Modugno
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Table A.3
Root mean square error of monthly forecasts - Three month ahead.
Source: Authors.

Online Offline Survey AR(1) Phillips RW

Australia 0.276 0.296 . 0.350 0.406 0.442
D-M 0.085 . 0.063 0.001 0.002
S-W 2.374 . 1.179 1.737 1.303

(0.943) . (0.609) (0.548) (0.213)
Canada 0.155 0.172 . 0.180 0.181 0.288

D-M 0.038 . 0.007 0.007 0.001
S-W 1.378 . 2.120 2.124 1.221

(1.030) . (0.898) (0.875) (0.284)
France 0.165 0.156 . 0.189 0.166 0.226

D-M 0.394 . 0.002 0.285 0.002
S-W 0.517 . 0.665 0.702 1.021

(0.404) . (0.414) (0.399) (0.171)
a Germany 0.235 0.225 . 0.247 0.243 0.323

D-M 0.339 . 0.139 0.089 0.001
S-W −0.359 . 0.148 −0.232 1.117

(0.884) . (0.615) (1.004) (0.203)
Greece 0.378 0.459 . 0.472 0.450 0.747

D-M 0.018 . 0.000 0.002 0.000
S-W 1.460 . 1.994 1.729 1.126

(0.480) . (0.644) (0.553) (0.162)
Ireland 0.158 0.162 . 0.181 0.226 0.219

D-M 0.130 . 0.046 0.028 0.032
S-W 3.272 . 0.954 1.087 0.983

(1.227) . (0.346) (0.248) (0.175)
Italy 0.129 0.131 . 0.169 0.132 0.175

D-M 0.449 . 0.005 0.384 0.012
S-W 0.924 . 1.007 0.932 0.975

(0.476) . (0.464) (0.447) (0.198)
Netherlands 0.256 0.285 . 0.301 0.283 0.379

D-M 0.122 . 0.057 0.081 0.002
S-W 1.104 . 0.917 0.906 0.889

(0.774) . (0.653) (0.565) (0.220)
UK 0.167 0.175 . 0.221 0.219 0.198

D-M 0.363 . 0.000 0.040 0.033
S-W 1.286 . 0.689 1.125 1.087

(0.299) . (0.623) (0.240) (0.195)
USA 0.212 0.203 . 0.213 0.211 0.309

D-M 0.338 . 0.103 0.388 0.001
S-W 2.094 . −0.193 1.605 1.126

(1.914) . (2.590) (0.990) (0.163)

Notes: The table shows the root mean square errors (RMSE) of the
baseline and our main benchmark when the top 100 single models
in Eq. (3) are included in the pooled forecast. RMSEs are expressed in
non-annualized monthly percentage points. D-M shows the p-values of
the null hypothesis of the online model presenting similar predictive
ability than each alternative model. The test is based on Diebold and
Mariano (1995), using a small sample adjustment from Harvey et al.
(1997). S-W represents the λ coefficient of Stock and Watson (1999b)’s
test. This test suggests that the online index is a valuable source of
information to forecast the inflation rate when λ is significantly higher
than zero. λ’s standard errors are in parenthesis.

(2013) and Knotek and Zaman (2015). Second, forecasts
that include online sector indices might better capture
changes in price trends in volatile sectors, such as cloth-
ing. Currently, the main limitation is the short time span
of testable data available for these indices, but as time
goes by, the inclusion of sectoral data will become a
feasible exercise. Third, new research avenues should in-
vestigate the reasons why online prices anticipate the
CPI, even after removing their frequency and immediate-
release advantages.

Table A.4
Root mean square error of monthly forecasts - One month ahead.
All-model specification.
Source: Authors and 1-month-ahead survey of professional forecasters
published by Bloomberg.

Online Offline Survey AR(1) Phillips RW

Australia 0.234 0.272 0.258 0.299 0.286 0.361
D-M 0.077 0.628 0.022 0.017 0.018
S-W 0.659 0.446 0.703 0.769 0.779

(0.342) (0.082) (0.252) (0.278) (0.172)
Canada 0.093 0.134 0.135 0.186 0.185 0.278

D-M 0.034 0.000 0.005 0.004 0.007
S-W 1.061 1.338 0.962 0.962 0.978

(0.340) (0.011) (0.177) (0.179) (0.115)
France 0.151 0.158 0.127 0.185 0.174 0.219

D-M 0.051 0.069 0.006 0.003 0.007
S-W 0.791 0.169 1.101 1.093 1.236

(0.623) (0.248) (0.343) (0.334) (0.172)
Germany 0.209 0.217 0.092 0.262 0.256 0.351

D-M 0.236 0.000 0.064 0.045 0.000
S-W 0.465 0.113 0.814 0.921 1.303

(0.619) (0.143) (0.314) (0.371) (0.154)
Greece 0.439 0.449 . 0.476 0.454 0.618

D-M 0.068 . 0.131 0.491 0.036
S-W 1.418 . 0.329 0.121 1.067

(2.193) . (0.883) (0.833) (0.259)
Ireland 0.151 0.164 . 0.176 0.254 0.217

D-M 0.134 . 0.013 0.006 0.001
S-W 0.945 . 0.938 0.976 0.997

(0.373) . (0.257) (0.215) (0.160)
Italy 0.117 0.140 1.253 0.176 0.143 0.202

D-M 0.000 0.000 0.000 0.063 0.002
S-W 1.604 0.985 1.448 0.929 1.366

(0.553) (0.000) (0.301) (0.297) (0.161)
Netherlands 0.198 0.216 . 0.284 0.276 0.306

D-M 0.052 . 0.002 0.001 0.001
S-W 0.726 . 1.024 1.050 0.964

(0.623) . (0.335) (0.327) (0.213)
UK 0.131 0.166 0.140 0.189 0.148 0.181

D-M 0.005 0.720 0.001 0.097 0.002
S-W 1.328 0.785 1.217 1.089 1.366

(0.316) (0.000) (0.222) (0.172) (0.140)
USA 0.092 0.125 0.096 0.200 0.285 0.244

D-M 0.015 0.933 0.002 0.000 0.001
S-W 1.063 0.486 1.105 1.001 1.118

(0.191) (0.001) (0.090) (0.082) (0.071)

Notes: The table shows the root mean square errors (RMSE) of the
baseline and our main benchmark when all the single models in Eq. (3)
are included in the pooled forecast. RMSEs are expressed in non-
annualized monthly percentage points. D-M shows the p-values of the
null hypothesis of the online model presenting similar predictive ability
than each alternative model. The test is based on Diebold and Mariano
(1995), using a small sample adjustment from Harvey et al. (1997). S-W
represents the λ coefficient of Stock and Watson (1999b)’s test. This
test suggests that the online index is a valuable source of information
to forecast the inflation rate when λ is significantly higher than zero.
λ’s standard errors are in parenthesis.
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Table A.5
Root mean square error of monthly forecasts - Two month ahead.
All-model specification.
Source: Authors.

Online Offline Survey AR(1) Phillips RW

Australia 0.361 0.353 . 0.368 0.326 0.329
D-M 0.328 . 0.384 0.316 0.403
S-W 0.204 . 0.629 0.382 0.604

(0.909) . (0.540) (0.433) (0.294)
Canada 0.192 0.175 . 0.185 0.190 0.281

D-M 0.066 . 0.069 0.166 0.020
S-W −0.539 . 0.028 0.270 0.792

(1.169) . (0.876) (0.680) (0.243)
France 0.177 0.175 . 0.185 0.183 0.212

D-M 0.177 . 0.130 0.450 0.115
S-W −0.482 . 0.612 0.343 1.073

(1.171) . (0.700) (0.626) (0.218)
Germany 0.256 0.239 . 0.246 0.241 0.315

D-M 0.031 . 0.165 0.138 0.032
S-W −0.990 . −0.275 −0.430 0.981

(0.625) . (0.545) (0.472) (0.225)
Greece 0.451 0.454 . 0.454 0.437 0.537

D-M 0.442 . 0.337 0.469 0.003
S-W 0.451 . 0.268 0.323 0.766

(1.008) . (0.678) (0.643) (0.268)
Ireland 0.195 0.178 . 0.176 0.248 0.218

D-M 0.001 . 0.008 0.036 0.074
S-W −1.509 . −0.085 0.556 0.748

(0.697) . (0.404) (0.358) (0.212)
Italy 0.148 0.146 . 0.181 0.134 0.193

D-M 0.330 . 0.006 0.055 0.049
S-W −0.052 . 0.850 0.113 1.069

(1.023) . (0.533) (0.564) (0.214)
Netherlands 0.232 0.259 . 0.293 0.276 0.314

D-M 0.074 . 0.002 0.001 0.012
S-W 0.953 . 1.244 1.295 0.850

(0.773) . (0.518) (0.509) (0.225)
UK 0.177 0.191 . 0.210 0.171 0.176

D-M 0.031 . 0.006 0.404 0.487
S-W 0.935 . 0.716 0.940 0.909

(0.504) . (0.400) (0.248) (0.190)
USA 0.209 0.211 . 0.210 0.253 0.310

D-M 0.360 . 0.286 0.050 0.001
S-W 0.388 . 0.594 0.585 1.068

(0.630) . (0.373) (0.381) (0.154)

Notes: The table shows the root mean square errors (RMSE) of the
baseline and our main benchmark when all the single models in Eq. (3)
are included in the pooled forecast. RMSEs are expressed in non-
annualized monthly percentage points. D-M shows the p-values of the
null hypothesis of the online model presenting similar predictive ability
than each alternative model. The test is based on Diebold and Mariano
(1995), using a small sample adjustment from Harvey et al. (1997). S-W
represents the λ coefficient of Stock and Watson (1999b)’s test. This
test suggests that the online index is a valuable source of information
to forecast the inflation rate when λ is significantly higher than zero.
λ’s standard errors are in parenthesis.

interest related to this project to disclose. All errors are
our own.

Appendix A

A.1. Online price indices

See Fig. A.1.

A.2. R2 Decomposition

See Fig. A.2.

Table A.6
Root mean square error of monthly forecasts - Three month ahead.
All-model specification.
Source: Authors.

Online Offline Survey AR(1) Phillips RW

Australia 0.522 0.399 . 0.350 0.406 0.442
D-M 0.095 . 0.079 0.234 0.304
S-W −0.147 . −0.171 0.206 0.650

(0.560) . (0.354) (0.294) (0.267)
Canada 0.199 0.191 . 0.180 0.181 0.288

D-M 0.306 . 0.268 0.299 0.002
S-W 0.131 . 0.207 0.244 1.056

(1.272) . (0.952) (0.973) (0.382)
France 0.179 0.178 . 0.189 0.166 0.226

D-M 0.430 . 0.025 0.014 0.018
S-W −0.517 . 0.419 0.512 1.034

(0.844) . (0.564) (0.565) (0.185)
Germany 0.252 0.247 . 0.247 0.243 0.323

D-M 0.091 . 0.471 0.071 0.017
S-W −0.603 . −0.362 −0.794 0.994

(0.732) . (0.647) (0.831) (0.197)
Greece 0.440 0.478 . 0.472 0.450 0.747

D-M 0.103 . 0.114 0.091 0.000
S-W 1.336 . 0.712 0.955 1.274

(0.833) . (0.741) (0.781) (0.215)
Ireland 0.212 0.186 . 0.181 0.226 0.219

D-M 0.009 . 0.045 0.220 0.385
S-W −2.365 . −0.595 0.132 0.619

(0.636) . (0.394) (0.490) (0.227)
Italy 0.151 0.153 . 0.169 0.132 0.175

D-M 0.318 . 0.112 0.021 0.069
S-W 0.023 . 0.154 0.023 0.785

(0.920) . (0.485) (0.538) (0.219)
Netherlands 0.296 0.292 . 0.301 0.283 0.379

D-M 0.369 . 0.308 0.253 0.008
S-W −0.118 . 0.118 0.445 1.000

(1.813) . (1.121) (1.056) (0.306)
UK 0.196 0.200 . 0.221 0.219 0.198

D-M 0.049 . 0.002 0.251 0.458
S-W 1.088 . 0.625 1.037 1.089

(0.692) . (0.538) (0.224) (0.196)
USA 0.229 0.221 . 0.213 0.211 0.309

D-M 0.001 . 0.022 0.203 0.004
S-W −2.083 . −0.854 0.679 0.980

(1.201) . (0.642) (0.804) (0.167)

Notes: The table shows the root mean square errors (RMSE) of the
baseline and our main benchmark when all the single models in Eq. (3)
are included in the pooled forecast. RMSEs are expressed in non-
annualized monthly percentage points. D-M shows the p-values of the
null hypothesis of the online model presenting similar predictive ability
than each alternative model. The test is based on Diebold and Mariano
(1995), using a small sample adjustment from Harvey et al. (1997). S-W
represents the λ coefficient of Stock and Watson (1999b)’s test. This
test suggests that the online index is a valuable source of information
to forecast the inflation rate when λ is significantly higher than zero.
λ’s standard errors are in parenthesis.

A.3. The models in detail

This section explains the methodological details of the
AR(p), Phillips curve, and Random-Walk models used in
the paper.

A.3.1. AR(p)
We set the first-order univariate autoregressive model

to be the benchmark as it is a simple model but remains
hard to outperform in the literature (see Faust & Wright,
2013; Stock & Watson, 2003 for examples). However,
we have also considered an autoregressive model with n
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Fig. A.3. Cumulative distribution of absolute value of errors. Note: This figure depicts the cumulative distribution functions of the root mean square
errors of the individual models included in the online pooled forecast and the offline benchmark. The solid line is the distribution based on models
using offline data, and the dashed one includes models using online indices.
Source: Authors.

equal to 2, 3, and 4 lags such that,

pt = a + φ1 pt−1 + φ2 pt−2 + · · · + φn pt−n + ϵt (A.1)

Models with n > 1 do not show any advantage over
n = 1.

A.3.2. Phillips curve
The Phillips-curve model uses n CPI lags and the last

month’s unemployment rate, ut−1. Thus,

pt = a+φ1 pt−1+φ2 pt−2+· · ·+φp pt−n+b ut−1+ϵt (A.2)

The conclusions of this paper do not change using the
seasonally-adjusted or non-seasonally adjusted unem-
ployment rate, so we only report results using the sea-
sonally adjusted values.

A.3.3. Random walk
Similar to Ang et al. (2007), Atkeson and Ohanian

(2001), Stock and Watson (2001) and Stock and Wat-
son (2007), we report out-of-sample forecasts from a
Random-Walk that averages the last four months of in-
flation. The model is defined as,

pt =
1
n

n∑
s=1

pt−s (A.3)

The results in this paper remain unchanged setting n
to 1, 2, or 3.

A.4. Statistical significance of monthly forecast results

See Tables A.1–A.3.

A.5. Cumulative distribution of absolute value of errors

See Fig. A.3.

A.6. Sensitivity of the forecast average

The tables in this section show the RMSE of the base-
line and our main benchmark when all the single models
in Eq. (3) are included in the pooled forecast. This specifi-
cation, therefore, averages all models from the 24, 36, and
48 window length, as well as fixed and increasing time
window, and single models that do not take into account
the CPI lags or the fuel survey.

In other words, the pooled forecasts assume there was
no ex-ante analysis to distinguish between good and bad
performing models. This is a disadvantageous assumption
since most analysts would first restrict the set of models,
avoiding cases, for example, where the CPI is not included
in the regressions.

Nevertheless, the results on the table suggest that the
online series are a useful predictor of the CPI. For example,
the 1-month ahead forecast is, on average, 15 percent
more accurate than the main offline benchmark, and 5
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percent more accurate than the survey of professional
forecasters published by Bloomberg.

Tables A.4, A.5, and A.6 show the one-month, two-
month, and three-month ahead forecasts, respectively.

Appendix B. Supplementary data

Supplementary material related to this article can be
found online at https://doi.org/10.1016/j.ijforecast.2019.
04.018. The supplementary material includes the scripts
and dataset needed to replicate our main forecasting anal-
ysis.
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