
Algorithmic Finance 7 (2018) 53–61
DOI:10.3233/AF-180231
IOS Press

53

How hard is it to pick the right model?
MCS and backtest overfitting
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Abstract. Recent advances in machine learning, artificial intelligence, and the availability of billions of high frequency data
signals have made model selection a challenging and pressing need. However, most of the model selection methods available
in modern finance are subject to backtest overfitting. This is the probability that one will select a financial strategy that
outperforms during backtest, but underperforms in practice. We evaluate the performance of the novel model confidence set
(MCS) introduced in Hansen et al. (2011a) in a simple machine learning trading strategy problem. We find that MCS is
not robust to multiple testing and that it requires a very high signal-to-noise ratio to be utilizable. More generally, we raise
awareness on the limitations of model selection in finance.
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1. Introduction

With recent advances in machine learning, paral-
lel computing, and large historical millisecond-based
financial datasets, it is not rare for industry engi-
neers to backtest hundreds or thousands different
investment strategies in order to search for the
most profitable model.2 Likewise, the availability
of unprecedented quantities of individual-level data
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1True Positive Technologies, New York, NY, USA; Lawrence
Berkeley National Laboratory, Berkeley, CA, USA. E-mail:
lopezdeprado@lbl.gov.

2In fact, machine learning and artificial intelligence algorithms
can be trained to scan billions of data signals in order to design
millions, if not billions, of different virtual trading strategies. See
https://bloom.bg/2lfscxT (Bloomberg) and http://on.ft.com/2g2
ihNO (Financial Times). AI equity research robots are already
tracking and providing views on asset prices. See https://bloom.bg/
2jb4bJP (Bloomberg).

also means that A/B experimentation and data-driven
designs are becoming the gold standard in online plat-
forms, retail, technology companies, medicine, and
even policy (Lazer et al. (2009), Kohavi et al. (2007),
Bakshy et al. (2014), Varian (2014), Bastani & Bay-
ati (2015), Athey (2017), Lada et al. (2018)). But
as we test an increasing number of strategies and pre-
dictive features, or repeat the same experiment many
times, it becomes more likely that some of the esti-
mated effects will be extraordinarily effective. How,
then, should we evaluate and select the right models?
And in which situations does it matter? The multiple
testing problem is now more pervasive and affects
both practitioners and academics alike. And therefore
it is important that analysts use tougher standards to
test their models in a robust and unbiased way.

This paper evaluates the performance of the ’model
confidence set’ (MCS) introduced in Hansen et al.
(2011a). The MCS procedure, described in Section
2, starts with a collection of models, and sequen-
tially prunes the worst performing models one by
one, according to some user-defined loss function,
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until the first non-rejection takes place. These surviv-
ing models, found to be statistically similar, define the
estimated model confidence set M̂∗. MCS presents
many appealing features relative to other techniques.
It allows the user to reduce the baseline set of models
to a smaller set (model confidence set); the confi-
dence set need not be just one model; the user can
define the meaning of best (i.e. the loss function);
it avoids p-values concerns from multiple pairwise
comparisons; and it also avoids the somewhat arbi-
trary decision to choose a benchmark model against
which all models are evaluated. Hansen et al. (2011a)
thus present a substantial contribution to the long-
standing discussion on model selection, which, in our
view, is nowadays becoming more and more perva-
sive. While we favor these advances, however, we
find that the properties assumed in MCS are not well-
suited to aid the model selection problem in modern
finance.

In the introduction to their article, for instance, the
authors suggest that MCS can be used to select ’treat-
ment effects’ or ’trading rules with the best Sharpe
ratio’ (p. 454). Our simulations suggest that the cov-
erage properties in MCS are not adequate to winnow
out trading strategies in practice. Analysts may use
MCS for initial screening or forecasting combina-
tion, but not as sufficient evidence to select investment
strategies. Similarly, academics should not rely solely
on MCS as sufficient evidence to defend a given
macroeconomic or forecasting model. We hope that
our discussions here raise awareness of the limita-
tions of similar model selection methods, but also of
the need for further research in this area.

This paper relates to an extensive literature on
model selection and forecast evaluation in economics
(Corradi & Distaso (2011), Elliott & Timmermann
(2016), Clark & McCracken (2013)). More gen-
erally, our work relates to a deeper discussion of
the implications and challenges of data-driven model
selection (Leeb & Potscher (2005)). Concerns about
false discoveries due to p-hacking, or data snoop-
ing, are not limited to finance, but arguably affect
all observational or experimental studies (Ioannidis
(2005), John et al. (2012), Simonsohn et al. (2014)).
A growing variety of methods address the multi-
ple testing problem (White (2000), Benjamini &
Hochberg (1995), Benjamini & Yekutieli (2001),
Storey (2002), Romano & Wolf (2005), Romano
et al. (2010); see also Bailey et al. (2014) and Harvey
et al. (2016) for recent methodologies in finance).

The rest of the paper is structured as follows. Sec-
tion 2 describes the MCS and its limitations. Section 3

presents simulation results from the perspective of
selecting financial strategies. Section 4 concludes.

2. MCS

We begin this Section with a brief overview of
the model confidence set (MCS) from Hansen et al.
(2011a), and then introduce the main limitations of
applying it to a forecasting problem. We encourage
the reader to see Hansen et al. (2011a), Hansen et al.
(2011b), and Hansen et al. (2014) for additional
details on the methodology. We stress that our discus-
sions here should not be understood as a naive critique
of the MCS. MCS presents a substantial contribution
to the model selection problem; we find, however,
that the requirements in MCS are not adequate to
many of the modern model-selection problems faced
in practice.

MCS starts with a collection of models M0 pre-
defined by the user. Without loss of generality,
consider the hypothetical case of a manager whose
problem is to decide the best investment strategy.
In deciding which strategy to invest in, the manager
might simulate and analyze the backtesting perfor-
mance of several hundred, possibly thousands, of
different strategies. In fact, recent advances in multi-
processing computing and big data allow us to very
easily simulate thousands of investment strategies
at the same time, all of them using an arsenal of
millisecond-long transactions, while fine-tuning the
best feature set combination. MCS provides a frame-
work that facilitates the model-selection problem.
In particular, MCS yields a model confidence set,
M̂∗

1−α, that contains a (possibly smaller) set of the
best models with a given level of confidence. That is,
limn→∞ P(M∗ ⊂ M̂∗

1−α) ≥ 1 − α. M̂∗ can poten-
tially be equal to just one strategy, but could also
contain all the initial models if these are found to be
statistically similar.

Following the notation in Hansen et al. (2011a),
MCS is based on an equivalence test, δM, and an
elimination rule, eM. The algorithm can be described
as follows.

� Initially set M = M0, where M0 contains
a finite number of models indexed by i =
1, · · · , m0. These objects will be evaluated
according to a user-defined loss function Li,t =
L(Yt, Ŷi,t). For instance, Li,t = (πt − π̂i,t)2

could be defined as the squared error from the
actual inflation πt and the forecast π̂i,t from
model i.
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� Test the hypothesis H0,M : μij = 0 at level
α, for all i, j ∈ M, where μi,j ≡ E(dij,t),
and dij,t ≡ Li,t − Lj,t denotes the relative
performance.

� If H0,M is accepted, then M̂∗
1−α = M. Other-

wise use the elimination rule, eM, to drop the
worst model from M and repeat the procedure.
Different test statistics are proposed in Hansen
et al. (2011a). In the case of the TRange statis-
tic, for instance, the worst model is such that

eM ≡ argmaxi∈M
d̄ij√
ˆvar(d̄ij)

.

When the procedure ends, MCS yields M̂∗
1−α, or

the set of ’surviving’ models, in the sense that there
is no object whose relative performance is found to
be significantly inferior to the other elements.

Although MCS is easy to compute (there are sev-
eral statistical software packages available) and has
many attractive features, we find that its use is lim-
ited in practice. The methodology requires the true
superior models to have an unrealistically high signal-
to-noise ratio. The low power of the test is in part due
to not defining a benchmark. In Section 3, for exam-
ple, we show that a superior model would need to
have an annualized Sharpe ratio greater than 7 to be
picked up as the single model in M̂∗. Practitioners
are not likely to face such profitable strategies, and
if they do, those strategies may be highly overfitted.
Moreover, MCS does not fully penalize the test with
the number of trials in the experiment.

Model selection criteria that do not severely penal-
ize for multiple testing tend to select models that
have experienced a high backtesting performance
when, in reality, they are of the same quality as many
others with a poorer performance. The problem is
exacerbated with large N trials, similarly to testing
individual coefficients in a regression. If there are
dozens of coefficients, on average there will be a
few that appear strongly significant. If we run hun-
dreds of trading strategies, some of them will yield
extraordinarily large Sharpe ratios and MCS will
select them.3

3. Simulation exercise

This Section presents simulation results in a finan-
cial engineering problem. However, the results are

3Bailey & López de Prado (2014) and Harvey & Liu (2014)
discuss ways to adjust Sharpe ratios and p-values based on the
number of trials. See also Barras et al. (2010) for a discussion of
false discoveries in mutual fund performance.

relevant to a wider range of model selection appli-
cations. Data scientists are regularly testing usage
time or conversion rates under different features via
A/B experimentation in retail, online platforms, and
mobile apps (Kohavi et al. (2007), Aparicio &
Prelec (2017); prediction methodologies to improve
decision-making are also becoming popular in policy
Athey (2017)).

We take the stand of a hedge fund manager who
has to choose between different investment strate-
gies. A manager will typically simulate M different
strategies, each of them generated using different
features, data signals, and machine learning meth-
ods, and potentially choose those with the highest
backtesting performance. We simulate M series of
financial returns as follows.4,5

1. Let M be the number of models (strategies) to
be simulated. Assume each model m generates
T returns according to a random walk with drift.
We also assume that daily returns experience a
Poisson jump-diffusion process, similar to Mer-
ton (1976). When this event takes place, returns
jump upwards or downwards an amount equal to
ten times the (daily) volatility. In discrete form,

r̃m,t ∼ N(μt, σt), m ∈ M, t ∈ T (1)

rm,t = r̃m,t + bm,t(λ)(10 ∗ σt) (2)

where b = {−1, +1} with equal probability, and
takes place according to a Poisson process with
occurrence rate λ = 3%. We vary T from 1 to 3
years of daily returns; and M from 10 to 100.
Returns in equation (1) are generated to have
mean annual return μ = 10% and annual return
volatility, σ, from 3% to 30%; e.g. μt = μ

T
and

σt = σ√
T

when T is 1 year (250 trading days).
2. We introduce one true superior strategy, which

is defined as having a (’multiplier’) times higher
expected returns. That is, using the notation from
equation (1), E(r̃1,t) = a ∗ μt . We let a fixed
within each simulation, but vary a from 1 to 20
across different specifications. When a = 1 all
models are equally good.

3. In order to evaluate the performance of a strategy,
we define the loss function as the excess returns
over the expected returns:

4The data generating process (DGP) in the following simula-
tions is a simplified yet standard assumption in the literature (e.g.,
Harvey & Liu (2014)).

5The Python codes to reproduce the results are available on the
authors’ webpage.
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Lm,t = −(rm,t − r̄)

Where r̄ =
∑

m

M

(∑
t
rm,t

T

)
is the estimated aver-

age daily return across all models. Therefore
models with high returns have lower errors.

4. Finally, for each Monte Carlo simulation and
parameter combination, we apply the MCS pro-
cedure and analyze the in-sample as well as the
out-of-sample performance of the selected and
excluded models. As defined earlier, M̂∗

1−α cor-
responds to the set of surviving models that are
equally good in a statistical sense at level α. The
following results correspond to μ = 10%, sta-
tistical level α = 10%, and 400 repetitions per
simulation (for a total of about 2 million MCS
simulations).

3.1. Results

To first illustrate the lack of power or signal-to-
noise ratio problem in the MCS procedure, we narrow
the simulations to the case where M = 50, 100 and
T = 250 (about a year of daily trading data). Figure 1
shows the number of selected models inM̂∗ as a func-
tion of the in-sample Sharpe ratio. The Sharpe ratio
is calculated as SR = μ̂

σ̂
, where μ̂ and σ̂ denote the

estimated mean return and standard deviation, respec-
tively, during the in-sample period. Throughout the
paper we follow Lo (2002) to annualize Sharpe
ratios.6 We first show results for the MCS specifica-
tion using the TRange,M test statistic, a moving-block
bootstrap of length � = 5, and B = 500 bootstrap
samples. Results are similar under alternative speci-
fications of the TRange,M statistic. However, we find
somewhat inconsistent results using the Tmax,M test
statistic. See Section 3.3.

We find that the superior model needs to have a
Sharpe ratio greater than 7 to be picked up as the
sole best model in M̂∗.7 In some sense, this is to be
expected because MCS does not require a benchmark
model (contrary to, e.g., White (2000) and Romano
& Wolf (2005)) and thus there is greater uncertainty

6The DGP assumes M independent strategies, although we
note that in practice some will tend to be correlated. Correlated
returns would reduce the variance of dij,t ≡ (Li,t − Lj,t), and
therefore reduce the sample size required in MCS to identify the
superior model.

7Such Sharpe ratios are rarely seen in practice. As a ref-
erence, the S&P 500 Sharpe ratio is estimated at 0.38 during
1996–2014; even the best-performing hedge funds typically have
average Sharpe ratios below 2 (Titman & Tiu (2010),Getmansky
et al. (2015)).

Fig. 1. Number of models selected in M̂∗ as a function of the
in-sample Sharpe ratio of the superior model.

that exacerbates the need for a high signal-to-noise
ratio. In contexts of uncertainty over many models,
it is plausible that MCS can provide an interesting
strategy to create pooled forecasts based on (possibly
many) MCS selected strategies. Even simple forecast
combination schemes are hard to outperform in the
forecasting literature (Faust et al. (2013), Aparicio
& Bertolotto (2016), and references therein).

Figure 1 also suggests that the MCS’s threshold
Sharpe ratios uniformly penalize for the number of
trials. This concern can be related to a growing litera-
ture on the false discovery rate (FDR) or family-wise
error rate (FWER). The most common example is
that of using individual t-tests in multiple testing.
Suppose that we backtest N independent investment
strategies and find that the most profitable one has
a Sharpe ratio that is highly significant at the 1%
level. Even for small N, such as N = 25, the implied
probability of observing such t-statistic is high:
p = Pr(max SRi ≥ t̂) = 1 − (1 − p̂)N = 22%. Sev-
eral methods have been proposed to account for
the FDR or FWER: Bonferroni’s adjusted p-values,
Holm’s step-down p-values (Holm (1979)), White’s
reality check (White (2000)), FDR-based tests (Ben-
jamini & Hochberg (1995), Storey (2002)). See also
Romano & Wolf (2005) and Romano et al. (2008).
Analysts should consider applying tougher adjusted
p-values into the MCS test to further strengthen their
estimated model confidence sets.

This concern is relevant here because the mul-
tiple testing problem is particularly worrisome in
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finance (Barras et al. (2010), Bailey et al. (2014),
Lo (2002)). Hedge funds managers can be tempted
to backtest hundreds of trading strategies, and then
present to their clients those with the highest per-
formance. By selecting investment i, where i =
argmaxm{SRm}, m ∈ M, one might end up picking
the one with the highest backtesting overfitting prob-
ability (which is therefore likely to underperform
out-of-sample).8

Figure 2 generalizes the results from Fig. 1 using
all parameter specifications. In particular, the 3D-
surface shows the percentage of models included in
M̂∗ as a function of the number of models M and
the Sharpe ratio of the superior model. In all cases,
we use T = 250 in-sample returns observations, and
limit the Sharpe ratio to 10 for better visualization.
We find that, for a given in-sample Sharpe ratio, the
percentage of models in M̂∗ is very similar across M.
MCS takes into account the FWER using all models
in M̂ in each round of the MCS procedure, and its
p-values therefore satisfy the monotonic relationship
p̂eM1

≤ p̂eM2
≤ · · · ≤ p̂eMm0

. This is reminiscent of
the step-down adjusted p-values (Holm (1979)).
Starting with the smallest p-value, Holm’s method
adjusts each p-values sequentially, and in particu-
lar progressively inflates subsequent p-values.9 The
monotonicity implies that the elimination rule in
MCS makes subsequent rounds (where models in
Mk are sequentially better) harder to reject the null
hypothesis H0,Mk

. Every time MCS prunes the worst
model in round k, however, there is still a probability
of a false discovery and therefore a sequential size dis-
tortion that creates a tight trade-off between FWER
and power.

3.2. Out-of-sample performance

Finally, we illustrate what we observe out-of-
sample when we use the MCS algorithm to select
financial strategies. We restrict the data to the case
where T = 250 in-sample observations, T = 125
out-of-sample observations, M = 100 initial mod-
els, one superior strategy with a = 10, and μ =
10% and σ = 9% (results are similar under alterna-
tive specifications). We first compare the in-sample

8See Bailey & López de Prado (2014), Harvey & Liu (2015),
Harvey et al. (2016), and Bailey et al. (2017) for recent method-
ologies to address backtest overfitting. See Ioannidis (2005) for a
general discussion.

9Holm’s method ends once the first null hypothesis cannot be
rejected. Holm’s is less strict that Bonferroni’s, which inflates all
p-values equally. In fact, pHolm

m ≤ p
Bonf.
m , ∀m ∈ M.

Fig. 2. Generalizes Fig. 1 using all parameter specifications. Per-
centage of models included in M̂∗ as a function of the number of
models M and the Sharpe ratio of the superior model.

and out-of-sample performance of the MCS selected
models, M̂∗. And we then evaluate the out-of-sample
performance of both MCS selected and excluded
models, that is M̂∗ and M̂C∗, respectively.

Figure 3 shows that the out-of-sample performance
of the selected models in M̂∗ is significantly worse
than their corresponding in-sample performance.
This behavior is suggestive of backtest overfitting.
In fact, Fig. 4 shows that the out-of-sample mean
returns of the selected strategies, M̂∗, is no better
than that of the eliminated strategies, M̂C∗. Figures
exclude the true superior model for better visual com-
parison. Not fully penalizing for the multiplicity of
trials leads us to more easily select strategies that, out
of too many equally good models, were just lucky
instances during backtesting.

3.3. Alternative specifications

We now discuss robustness results from two alter-
native specifications. First, we extend the simulation
to select financial strategies based on a collection of
Sharpe ratios. In particular, we follow the steps from
Section 3 and simulate three years of daily returns.
For each strategy, we compute twelve annualized
Sharpe ratios based on their quarterly performance
(similar results are obtained using monthly or bi-
monthly SRs). We then compute the number of MCS
selected models as a function of the superior model’s
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Fig. 3. The out-of-sample performance of the selected models
in M̂∗ is significantly worse than their corresponding in-sample
performance. This figure shows the histogram of in-sample and
out-of-sample Sharpe ratios of the MCS selected strategies (prob-
ability density function).

Fig. 4. The out-of-sample mean returns of the selected strategies,
M̂∗, are no better than that of the eliminated strategies, M̂C∗.
This figure shows the histogram of mean out-of-sample returns
of the MCS selected and excluded strategies (probability density
function).

Sharpe ratio, its return multiplier a (relative to a
baseline 10% annual return), as well as the out-of-
sample performance of the selected (and excluded)
trading strategies. In this case, the loss function is
computed for each strategy-period SR as opposed to

Fig. 5. We simulate trading strategies following Section 3, and
construct quarterly Sharpe ratios. We apply the MCS procedure to
this collection of Sharpe ratios and compare the MCS selected and
excluded models. Figure 5 shows that it takes a very large Sharpe
ratio for MCS to pick up the superior model. Figure 9 generalizes
this exercise for different parameter specifications.

daily returns. The results, shown in Figs. 5–7, are
similar to those in the previous Section. We find that
MCS will select strategies with backtest overfitting
and that the selected and excluded strategies perform
equally good out-of-sample. Figure 9 (Appendix)
also shows that MCS excludes a large fraction of
models even when all strategies are equally good
(a = 1).

Finally, we discuss the case when MCS is used
with the Tmax,M statistic instead of TRange,M. In the
case of the test statistic Tmax,M the elimination rule is

emax,M ≡ argmaxi∈Mti·. Where ti· = d̄i·√
ˆvar(d̄i·)

, d̄i· =
m−1 ∑

j∈M d̄ij , and d̄ij = n−1 ∑n
t=1 dij,t measures

the relative sample loss between i and j models. We
find that MCS is very sensitive to the choice between
Tmax,M and TRange,M. In particular, the former yields
conservative model confidence sets, and in fact MCS
will not pick up the right model for any reasonable
Sharpe ratio. For in-sample Sharpe ratios below 10,
MCS will select almost all models regardless the
number of starting models m0. The results are shown
in Figs. 8 and 10 (Appendix).10

10Consistent with these results, it has come to our attention that
the Tmax,M statistic, and therefore the elimination rule emax,M, is
not recommended in practice. See Corrigendum (Hansen et al.
(2014)).
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Fig. 6. Figures 6 and 7 show that the MCS selected strategies
are subject to backtest overfitting, i.e. the strategies experience a
larger in-sample Sharpe ratio although they are equally good out-
of-sample. This figure shows the histogram of mean in-sample
and out-of-sample Sharpe ratios of the MCS selected strategies
(probability density function). Results are qualitatively similar to
those in Section 3.

Fig. 7. This figure shows the histogram of the mean out-of-sample
Sharpe ratios of the MCS selected and excluded strategies (prob-
ability density function).

4. Conclusions

Traditional testing and evaluation methods need to
be reconsidered in light of recent advances in big data
and technology. Portfolio managers, for instance, can

Fig. 8. We simulate trading strategies following Section 3 and
use the Tmax,M statistic instead of TRange,M . This figure shows
that, for in-sample Sharpe ratios below 10, almost all models are
selected, regardless of the number of starting models m0.

now generate thousands of different trading strategies
at little computational cost, and then present those
with the highest backtesting performance to their
investors. Similarly, data scientists in industry can
design experiments to test each of the new features,
and even repeat these experiments many times. In
finance, this means that machine learning strategies
will be subject to backtest overfitting: we will tend to
select strategies that, out of so many, just happened to
experience high backtesting performance. We there-
fore need new tools that can severely penalize for the
multiplicity of trials but remain powerful enough to
be utilized in practice.

We test the performance of the model confidence
set introduced in Hansen et al. (2011a) using a variety
of financial strategies simulated from the perspec-
tive of a portfolio manager. We find that MCS is
not adequate to solve an analyst’s model selection
problem, and more generally we hope that our work
raises awareness of the challenges of model selection
in modern finance.
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Appendix Figures

Fig. 9. Generalizes the results on the collection of quarterly Sharpe
ratios using all parameter specifications. This figure shows the
number of models in M̂∗ as a function of the number of models M

and the return multiplier, a, of the superior model.

Fig. 10. We simulate trading strategies following Section 3 and use
the Tmax,M statistic instead of TRange,M . See Section 3.3 for addi-
tional details. Figure 10 shows the probability that M̂∗ is exactly
equal to the true superior model M∗ as a function of its estimated
in-sample Sharpe ratio. A cubic spline is added as visual guide.


