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ABSTRACT
As businesses become more sophisticated and welcome new technologies, artifi-
cial intelligence (AI)-basedmethods are increasingly beingused forfirms’pricing
decisions. In this review article, we provide a survey of research in the area of AI
and pricing. On the upside, research has shown that algorithms allow companies
to achieve unprecedentedadvantages, including real-time response to demandand
supply shocks, personalized pricing, and demand learning. However, recent
research has uncovered unforeseen downsides to algorithmic pricing that are
important for managers and policy-makers to consider.
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1. INTRODUCTION
Advances in technology enable businesses to overcome barriers that pricing
managers have faced for decades. For example, “menu costs” associated with
updating retail prices have been a common obstacle. Menu costs include the costs
of the printing and physical placement of a new price tag every time the price for
a given product changes. As a result, setting different prices for different varieties
of a product (e.g., different shades of a nail polish) is cost prohibitive for stores.
Anderson, Jaimovich, and Simester (2015) suggest that because of labor costs,
price changes on products average only 100 SKUs per day, for five days a week
(out of about 20,000 SKUs). Another barrier stems from firms’ prevailing
managerial practices (Aparicio & Simester, 2022). In fact, Dellavigna and Gen-
tzkow (2019) report nearly uniform prices (across stores) for most US food, drug
store, and mass merchandise chains – even though individual retail stores face
different demand conditions.
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Dellavigna and Gentzkow (2019) describe this phenomenon as managerial
inertia – a combination of agency frictions and behavioral management factors.
Hitsch, Hortaçsu, and Lin (2021) complement this evidence with a statistical
barrier: given the available historical data, credibly distinguishing price elastici-
ties across stores is hard for managers. This challenge, in turn, limits the feasi-
bility of price discrimination across stores.

As stores digitize, some of these barriers disappear. Today, an e-commerce
pricing manager can change the price of a product with the press of a button. The
menu cost is near zero, and indeed we observe firms updating prices in very short
time intervals, e.g., every 15 minutes (Chen, Mislove, & Wilson, 2016; White,
2012). In physical retail stores, the increased use of digital shelf labels (Hansen,
Misra, & Sanders, 2021a; Stamatopoulos, Bassamboo, & Moreno, 2021) also
facilitates such changes. However, these digital innovations present new “big
data” challenges for pricing managers. Without the constraints of physical dis-
plays, e-commerce retailers provide consumers with much larger product
assortments.1 In addition, in e-commerce, firms can observe rich data about
consumer behavior (e.g., search, clicks, and purchase decisions) and competitive
pricing in real time. These unprecedented changes in scale (Baker, Kiewell, &
Winkler, 2014) require heavy investments in computing resources. Even with
these rich data and sufficient computing power, how can managers/analysts set
real-time prices across millions of individual products?

Artificial intelligence (AI) provides a solution: A machine receives a set of
instructions to automate the pricing decision. The purpose of this paper is to
survey current research in the area of AI and pricing. In Section 2, we consider
research that provides evidence and insights for firms that are implementing AI
for pricing. We discuss the potential advantages: automatic pass-through from
cost shocks to prices (e.g., swings in commodities); price discrimination
(i.e., a firm can charge different users a different price); and price discovery
(i.e., experiments to discover the profit-maximizing price). In Section 3, we
consider a longer term and broader view of how the increased use of AI models
affects firms, consumers, and public policy-makers. Here, we review studies
suggesting that firms can change consumer preferences with many price
changes, as well as studies examining the welfare implications of price
discrimination. For example, as the prevalence of AI adoption increases, it
raises the competitive bar and causes rival firms to race and react in real time to
the other firms’ prices. Section 4 concludes with some key learnings and avenues
for further research.

2. FIRMS IMPLEMENTING AI FOR PRICING
AI models provide the backbone infrastructure that allows firms to automate
their pricing decisions. By “automation,” we mean that a computer algorithm
determines the current price. This algorithm could be as straightforward as
defining some set of conditions, such that if those conditions are met, the price is
automatically updated. Or the algorithm could be a complex learning model that
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analyzes real-time data to set current prices. In most implementations, the pricing
algorithm operates as a computation mechanism using inputs such as pricing
rules (Proserpio et al., 2020).

For historical background, airlines were among the first firms to use AI to
automate their pricing decisions (Borenstein & Rose, 1994; Mcafee & Te Velde,
2006). Setting the price for a flight is inherently a complex, dynamic problem
because it depends on many elements that tend to exhibit abrupt shifts from day
to day. Airlines are subject to sudden changes both in demand (customers’
booking patterns) and in capacity (seat availability). As a result, research reports
a large degree of price variation across days in airline tickets, depending on the
time of purchase (relative to departure), competition on a particular route, and
the number of seats sold.

AI technology dramatically affects the price patterns observed in many
markets. In some cases, the price variability can be quite striking. Fig. 1 shows
two examples. Panel A collects the prices for an identical ride provided by
UberX, going from Boston’s Museum of Fine Arts to Boston’s Celtics Stadium
(Aparicio & Rigobon, 2021). Over the course of 7 days, there were 156 distinct
prices, ranging from $8.23 to $14.38; and in some cases, prices varied by as little
as 1 cent (e.g., $9.52, $9.53, $9.54, $9.55). The price variation (defined as the
ratio of standard deviation to average price) is estimated at 9%. This price
dispersion, while high, is not unprecedented; for example, using weekly scanner
data from offline stores, Hitsch et al. (2021) show that Tide laundry detergent’s
price varied between $5 and $8 between 2008 and 2012. What is different with
AI then? The answer is the time frame in which these price changes are
observed. The variation in Uber’s prices is observed in just a few days, while the
variation in the supermarket’s Tide prices is observed over a few years! Panel B
in Fig. 1 offers another illustration of the degree of AI-induced price variation.
It shows the prices in a US online grocery platform for several products,
including cereal, painkillers, personal care, and snacks (Aparicio, Eckles, &
Kumar, 2022). This online platform implemented an AI algorithm to set prices.
The charts reveal the remarkable variability of prices in periods when the
retailer utilizes price algorithms.

The range of businesses that use AI for pricing is wide and growing. What are
the advantages of AI pricing? In this chapter, we structure the advantages into
three parts:

• Dynamic Pricing: Real-time Swings in Demand and Supply
• Personalized Pricing: Price Discrimination
• Price Experimentation: Demand Learning

2.1 Dynamic Pricing: Real-Time Swings in Demand and Supply

Historically, pricing automation was driven by the need to account for real-time
changes in demand and supply. Consider the example of airline tickets. Airlines
use AI to automate the pricing decision because seat occupancy and proximity to
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Fig. 1. Examples of Algorithmic Pricing: Uber and Online Groceries. (a)
Prices charged for a UberX ride between two points: Boston’s Museum of Fine Arts
and Celtics Stadium. Data were collected for 1 week in 30-minute timestamps. (b)
Algorithmic pricing in four products sold by US online platform. Source: Extracted

from Aparicio and Rigobon (2021), Aparicio et al. (2022).
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departure vary continuously. Therefore, the ticket price a consumer observes in
the morning can be different from the price she will observe later in the afternoon.
Here, we consider the use of AI models to automate this process of inter-temporal
pricing.

Ride-hailing platforms offer a stylized, well-recognized case of AI models for
intertemporal pricing. Platforms like Uber and Lyft use “surge pricing” algo-
rithms to respond in real time to spikes and drops in drivers and consumers
(Allon, Cohen, & Sinchaisri, 2018; Castillo, 2020; Hall, Kendrick, & Nosko,
2015). The objective of surge pricing is simple: Increase prices when demand is
higher than supply and reduce prices when supply is higher than demand – the
principle taught in Microeconomics 101. Consider Uber’s prices in Panel A of
Fig. 1. Can fluctuations in demand (riders) or supply (drivers) explain such
disparate prices? Castillo (2020) studies data from the city of Houston and sug-
gests that the answer is yes. The study documents remarkable, high-frequency
swings in demand and supply at Uber across the hours within a day, and across
the days of the week. This imbalance creates enough price differences to allow for
structural estimates of agent primitives. The analyses indicate that, on the
demand side, consumers assign a high value to time (about $2 per minute); and
on the supply side, drivers have incentives to move to areas with high surge
pricing.

The short-term rental market is another environment characterized by abrupt
and rapid swings in supply or demand. Huang (2021) finds evidence suggesting
that Airbnb sellers (hosts) face cognitive constraints that prevent them from
setting the optimal price (a night of stay). The intuition for why sellers might have
limited bandwidth is that, similar to airlines or hotels, the pricing problem is
difficult for two reasons: (1) some nights face extraordinary demand (e.g., a
concert, a long weekend) and (2) the number of nights is capacity-constrained and
perishable (i.e., not renting is an opportunity cost). Perhaps tapping into this
opportunity to streamline hosts’ rental prices, Airbnb offers an AI solution –

“smart pricing” – that sellers can use to automate the pricing decision. However,
while this interface eases sellers’ barriers to changing their prices, the prices
decided by the “smart pricing” tool may not be profit-maximizing for the seller.
Instead, they may be profit-maximizing for the platform. Consequently, some
sellers resist adopting this technology.

Airbnb’s “smart pricing” tool is interesting because it illustrates a potential
incentives-related problem between the sellers’ pricing problem and the plat-
form’s pricing problem. Also interesting is that it showcases how mainstream
users are finding AI models for pricing easier to adopt. A few years ago, AI
pricing was primarily exclusive to big, techsavvy players; now, numerous soft-
ware companies provide AI-based repricing solutions at a relatively low cost
(Musolff, 2021). As these types of solutions become even more accessible to small
users, future research needs to examine its effects and whether they lead to a more
level playing field.

Competition. Businesses increasingly are motivated to use AI for pricing to be
more competitive. Competition intensifies especially when strategic behaviors
emerge between sellers of the same product. For instance, imagine that
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consumers are very price-sensitive and seek the cheapest alternative before
completing a purchase; for sellers of the same product (e.g., a used book, a
concert ticket), matching a competitor’s price can be critical. Alternatively, a firm
may be unsure about demand for its product (and the price it should set) and may
believe that other firms’ prices contain useful information. Or a firm may lack the
experience or time to update the price to changing market conditions and may
instead prefer to “follow” another firm. Regardless of the microfoundation, AI is
an ideal tool because it allows users to construct a set of instructions that auto-
matically change the price on the basis of the competitors’ price. The set of
instructions can be as simple as: (1) track competitor prices and (2) match the
lowest competitor price. Experienced platforms are likely to use a more advanced
set of instructions; for example, they may input competitor prices to re-optimize
their pricing algorithms, based on expected demand.

Merchants that sell the exact same product on the same platform may be
fiercely competitive. Intuitively, consumers that navigate a platform of sellers do
not need to “search” for the lowest price: The platform provides this information.
For example, Amazon’s marketplace (and other platforms) reveals the cheapest
alternative merchant for Dan Brown’s Da Vince Code, or a pair of Adidas shoes,
or for a TV monitor. The early work of Chen et al. (2016) characterizes the
existence of AI pricing between competing sellers in Amazon’s marketplace
(including Amazon itself as a seller). The authors report a number of insightful
facts, such as the frequencies and dynamics of price changes, and how/when
an individual seller’s use of algorithmic pricing increases the seller’s success.
Figures 14–17 in Chen et al. (2016) show their evidence of sellers’ automatic price
setting – in some cases, price-matching the lowest price; in other cases, as that of
Amazon, setting a constant premium price over the available sellers. An inter-
esting finding of this study is that charging the lowest price is highly predictive of
which product is selected in the “Buy Box.” Why is this important? To the extent
that a large proportion of platform sales occur through the “Buy Box,” then
adopting AI can be crucial in sellers’ attempts to outbid rivals and become the
default seller of choice.

Price comparisons are not limited to competing sellers in the same market-
place (i.e., website). Retailers often use competitive price trackers to compare
their prices with those of their competitors. As a visual example of
price-matching, consider Panel B of Fig. 2, obtained from Aparicio, Metzman,
and Rigobon (2021). The graph shows evidence that Amazon and Walmart, the
two online grocery e-commerce giants in the United States, match each other’s
price. Although online demand for ice cream arguably may not be very sensitive
to a few cents’ difference, other aspects of the technology’s use are worth
attending to. In particular: (1) AI is used to target a specific variety of ice cream
(same exact product) and (2) Amazon and Walmart carefully monitor each
other’s price and occasionally price-match within hours and for the same delivery
ZIP code. This example also showcases the vast amount of data that platforms
amass by the hour: prices for each SKU, for each delivery ZIP code, across hours,
across competing sellers.
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Another study that sheds light on the connection between AI pricing and
competition is Brown and Mackay (2020). Using a rich and high-frequency
dataset of over-the-counter allergy drugs from online retailers, the authors
report substantial heterogeneity in the retailers’ pricing technology for the same
product. Some retailers change prices within a day, and other retailers change
prices only once per week. How do these disparities in their pricing practices
affect the overall market for consumers, and how do they affect the retailers’
incentives to compete with each other? Again, the authors find that retailers are
mindful of competitor prices and leverage their pricing technology to undercut
rivals’ prices. They show that retailers that have faster AI technology (defined as
1–2 hours between price changes vs. 160 hours between price changes) are able to
undercut a rival’s price more rapidly, resulting in prices that are set about 30%
lower. This work further suggests that AI pricing algorithms may lead to
non-Betrand Nash price competition; we will discuss this in Section 3.3.

AI applications for pricing reviewed in this section have a common feature: AI
is used to change prices very frequently. Ride-hailing prices, grocery prices,
price-matching, and undercutting a rival are all characterized by high-frequency
price changes. Consistent with these trends, Cavallo (2018) reports a steady
increase in the number of price changes at online retailers as they adopt

Fig. 2. Algorithmic Price-Matching. Amazon’s and Walmart’s Price of Ben
& Jerry’s Chocolate Fudge Brownie for the Same Delivery Zipcode. Source:

Extracted from Aparicio et al. (2021).
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algorithmic pricing. Indeed, this fact tends to be exploited to identify the use of
algorithmic pricing. For example, Chen et al. (2016) define algorithmic sellers
based on two factors: (1) the number of price changes and (2) the correlation of
prices to the lowest of Amazon’s price; Assad, Clark, Ershov, and Xu (2020)’s
study of the German gasoline market identifies algorithmic prices based on a
trend break in the number and timing of price changes; and similarly, Aparicio
et al. (2022) exploit periods with and without intense price changes to infer when
the platform is using algorithmic pricing. However, we stress that, while frequent
price changes are a notable feature of AI pricing, they are not the only feature.

2.2 Personalized Pricing: Price Discrimination

Price discrimination can be a useful tool in the economics of pricing, allowing
firms to charge different prices to different sets of consumers.2 However, in many
cases, firms are not willing or able to charge a personalized price. One reasonable
concern is that the media or the public in general might be antagonistic if they
know that their specific “user identifier” is being targeted and charged a different
price for the same exact product. Amazon provides an exemplary illustration: As
recounted in The Atlantic (2017): “In 2000, some people thought Amazon was
doing this when customers noticed they were being charged different prices for
the same DVDs. Amazon denied it. This was the result of a random price test,
CEO Jeff Bezos explained in a news release. We’ve never tested and we never will
test prices based on customer demographics.”

The marketing literature has discussed the advantages of using historical
consumer data to achieve first-degree price-discrimination (i.e., personalized
prices at the individual level). Studies in this area simulate the benefits of
optimized targeted coupons and report notable profit gains (e.g., Gabel &
Timoshenko, 2021; Pancras & Sudhir, 2007; Rossi, Mcculloch, & Allenby, 1996;
Zhang & Wedel, 2009). Studying the implications of price targeting, Smith,
Seiler, and Aggarwal (2021) show (1) a large variation in predicted benefits based
on their assumed model of demand3 and (2) the importance of accurate purchase
history data (vs. demographics data).

When customization at the individual level is not feasible, firms may “cluster”
prices at a broader aggregation level: Stores or consumers in different geographic
areas are charged different prices. Studies that have examined geographical price
discrimination in brick and mortar retail settings (Adams & Williams, 2019;
Chintagunta, Dubé, & Singh, 2003; Duan & Mela, 2009; Ellickson & Misra,
2008; Hoch, Kim, Montgomery, & Rossi, 1995; Li, Gordon, & Netzer, 2018;
Zhang & Krishnamurthi, 2004) (1) provide evidence for different pricing strate-
gies across stores and (2) simulate the benefits of customized pricing for each
store. For instance, Chintagunta et al. (2003) study the implications of price
discrimination at different geographic levels (chain, zones of stores, stores), and
they estimate that store level pricing can increase profits for the retailer by about
10%–15%.

Despite the potential benefits of heterogeneous pricing strategies, Dellavigna
and Gentzkow (2019) document that prices within a retail chain tend to be fairly
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uniform (robust to food, drugstore, and mass-merchandise chains). They estimate
that this lack of cross-sectional (geographical) price discrimination costs the
median retailer about $16 million in annual profits (about 1.6% of revenue). The
reasons for this uniformity and the related cost include both managerial practices
and statistical limitations of insufficient price variation (Hitsch et al., 2021). This
lack of price discrimination is not unique to a brick and mortar retail context. In
many other industries, we observe that firms do not price-discriminate across
their product portfolio. Notable examples include prices at movie theaters
(Orbach & Einav, 2007), where all movies – regardless of popularity – have the
same price; rental cars (Cho & Rust, 2010), where all cars – regardless of mileage
– have the same price; online music (Shiller & Waldfogel, 2011), where prior to
2009, Apple’s iTunes charged 99 cents per song across the board; and fashion
(Aparicio & Rigobon, 2021), where products that have different colors, models,
or fabrics have an identical price.

AI price algorithms overcome barriers of uniform pricing. Aparicio et al.
(2021) collect novel data for hourly prices across delivery ZIP codes for the
leading online grocery retailers in the United States. They provide evidence that
most online grocers, but especially Amazon and Walmart, personalize prices at
the delivery ZIP code. Thus, two customers looking to buy Oreo’s at 9:00 p.m.,
one located in Miami and another located in Chicago, will be charged different
prices. Fig. 3 shows visual examples of price personalization based on the delivery
ZIP code. Note that even if customers somehow realize these price differences,
they will not be able to “arbitrage” them – that is, a customer is unlikely to have
their groceries delivered to another area to save the difference. The study also
shows that algorithms that price-discriminate (across locations) are also more
likely to price-change (across time). Therefore, as firms adopt more AI tools for
pricing, we might start to see more price discrimination as well.

We do note that the practice of geographical price discrimination is not
homogeneous across all online retailers. Using data from 2008 to 2013, Cavallo,
Neiman, and Rigobon (2014) report that Walgreens and Walmart were among
the few largest retailers to use location-based price discrimination. Cavallo (2017)
collected data from 56 retail chains in 10 countries and documents that the online
price matches the offline (physical store) price about 72% of the time. Moreover,
Cavallo (2018) considers the role of competition in this lack of geographical price
discrimination, particularly for durable goods, and suggests that if a competitor
(Amazon.com in these data) does not price-discriminate, then another firm
(Walmart in these data) is less likely to do so as well.

In the extreme case, online prices may be personalized for every consumer.
Perhaps one of the most compelling studies on price personalization is Dubé and
Misra (2021). The authors collaborated with Ziprecruiter.com4 and implemented
a field experiment to personalize prices for new customers. Ziprecruiter.com’s
status-quo was a price of $99 per month for all consumers; the experiment ran-
domized prices from $19 to $399 per month. The authors estimated a heteroge-
neous demand model and optimize the personalized prices based on an
observable set of 133 characteristics variables of a potential customer.5 The study
finds economically large effects from personalized price: 19% increase in expected
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profits relative to the optimal uniform price. This chapter raises a potential
concern when implementing model-based price discrimination: the highest
personalized price is $6,292, which is more than 15 times the maximum price
($399) in the experiment. Even limiting the maximum personalized price, they
estimate a 8% increase in revenue over uniform pricing. Importantly, they verify
this estimate with a second field experiment where they randomly assign potential
consumers to uniform and personalized pricing conditions.

The use of AI for personalized prices is not exclusive to online markets.
Karlinsky-Shichor and Netzer (2019) assess historical pricing data to recommend
personalized prices that sales people can use in their negotiations. Conducting a
randomized field experiment, the authors show that adding the AI-based price
recommendation to the customer relationship management system can increase
profitability by 10%. In a similar vein, Cui, Li, and Zhang (2022) study the role of
AI in procurement in an online B2B platform that connects buyers and suppliers.
The authors provide evidence showing that the quoted wholesale prices react to
the use of AI – quoted prices exhibit a premium for chatbot buyers, but the effect

Fig. 3. AmazonFresh’s Prices for a 12-Pack Diet Coke, Depending on the
Delivery Zipcode. Source: Extracted from Aparicio et al. (2021).
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is moderated if the buyer signals the use of AI to screen suppliers. This blended
approach of using AI models to enhance managerial decision-making is discussed
in Proserpio et al. (2020) and can provide a promising avenue for offline firms to
start using algorithmic pricing solutions.

2.3 Price Experimentation: Demand Learning

To implement a pricing strategy, a manager has to answer the most funda-
mental question: What is the optimal price for my product? It is not an easy
question in general. But it is even more difficult when the firm lacks data on the
demand (i.e., a new product, a change in the competitive landscape, or a
change in policy).6 A proactive solution is to experiment with various prices.
There are different kinds of experiments. Aparicio et al. (2021) provide evi-
dence that online grocers explore the price grid, an indication that price
algorithms are regularly running small experiments to test many distinct prices.
Similarly, firms can make small, randomized price changes to better estimate
price elasticities (Fisher, Gallino, & Li, 2018). In fashion, firms can introduce
products at different price buckets and later estimate the best bucket (Aparicio
& Rigobon, 2021), or firms can dynamically adjust markdown prices based on
demand signals (Cachon & Swinney, 2011). A novel illustration of price
experimentation is Dubé and Misra (2021). In collaboration with a B2B online
platform, the authors were able to randomize the prices charged for new cus-
tomers. The field experiment covered real purchases, as well as a vast range of
prices: customers were randomized to prices between $19 and $399 (with a
baseline price of $99).

Instead of considering learning and earning as two distinct phases, AI models
frame this as a dynamic optimization problem with the goal of maximizing
earning while learning. The computer science literature considers this problem in
the class of reinforcement learning (Sutton & Barto, 1998). Within this category,
multi-armed bandit (MAB) methods provide algorithms for describing the
experimentation process (e.g., Auer, 2002; Gittins, Glazebrook, & Weber, 2011).
In the application of MAB methods to pricing (see Kleinberg & Leighton, 2014;
Misra, Schwartz, & Abernethy, 2019), these methods consider a discrete set of
possible decisions (prices), each with a stable but unknown profit. The pricing
algorithm sets prices to balance current earning of profits and learning about
demand with future profits.

To see the advantage of this approach, consider Fig. 4 obtained from Misra
et al. (2019). In Panel A, we see that a balanced field experiment (left), charges all
prices with the same frequency. The key difference with a bandit (right) is that the
algorithm incorporates additional real-time feedback to update the prices charged
in real-time. The bandit’s objective of earning while learning leads to higher
profits (reduced experimentation costs) – after 1,000 prices, the bandit earns 95%
of optimal profits, while the balanced experiment earns only 66% of optimal
profits. Panel B shows the information learned about the true profit curve. The
balanced experiment (left) learns profits evenly at all price points, while the
bandit (right) learns most accurately about profits at near the optimal price
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(smaller standard errors). This is similar to the notion of “adequate” knowledge
in Aghion, Bolton, Harris, and Jullien (1991).

To find the profit maximizing price, a researcher can assume a parametric
functional form for demand to impose institutional or economic knowledge. The
learning problem then becomes one about learning the parameters of the demand
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Fig. 4. Comparing a Simulated Balanced Field Experiment to a Multi-armed
Bandit. Panel A. Prices Played: shows the spot price charged over time. A balanced
experiment (left) charges prices with equal probability while the bandit (right) leans in
real time and charges the truly optimal price ($0.50 in this simulation) more often.
Panel B. Profits Learning: The chart shows the mean and 95% confidence intervals of
the learned profit at each price. The red dotted line represents the true profit curve.
The balanced experiment learns the profit curve with the same precision at all prices,
while the bandit learns the true profit with small confidence intervals around the
optimal price ($0.5 in this simulation) and large confidence intervals at suboptimal

prices. Source: Extracted from Misra et al. (2019).
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function. An optimal algorithm to consider in this setting is called Thompson
sampling (Thompson, 1933).7 Ganti, Sustik, Tran, and Seaman (2018), from
Walmart labs, provide an example implementing this algorithm. They consider a
simple constant elasticity (single parameter) demand model per product and show
that applying Thompson sampling for dynamic pricing can lead to an improve-
ment of per unit sales, particularly when Thompson sampling includes a large
fraction of the products sold. Hansen et al. (2021a) consider data from a
brick-and-mortar retailer that uses digital shelf labels to set discounts (using
Thompson sampling) for expiring perishable products.

An alternative to this setup is to consider using a nonparametric approach, where
the AI model learns demand fundamentals. An optimal algorithm is the upper
confidence bound (UCB) algorithm (Auer, 2002).8 In a pricing application, Misra
et al. (2019) add demand learning to the UCB algorithm by enforcing that demand
curves must be weakly downward sloping. They show combining economic theory
andMABmethods increases the profitability of experiments, compared to balanced
field experiments and standard methods from computer science.

A limitation of MAB is that they are single-state models (Sutton & Barto,
1998). A richer framework is one in which the underlying demand state can
change endogenously – depending on the price charged (action taken). A
nonparametric solution is the Q-learning algorithm from the reinforcement
learning literature (Sutton & Barto, 1998; Watkins & Dayan, 1992).9 In pricing, a
Q-learning algorithm has been implemented in several contexts; for example, see
applications in energy (Lu, Hong, & Zhang, 2018), online coupons (Liu, 2021),
and perishable retail (Cheng, 2008). These applications differ in the endogenous
state considered, in Liu (2021) the endogenous states are defined by the con-
sumers’ RFM (Recency Frequency Monetary value) status, while in Cheng
(2008) the endogenous state is the inventory of the perishable good. Calvano,
Calzolari, Denicolo, and Pastorello (2020) and Klein (2021) consider multiple
firms simultaneously using Q-learning to study competitive market outcomes. In
these applications, a history of all prices defines the endogenous state and each
firm’s pricing algorithm can derive the optimal pricing strategy as a function of
competitive prices.

3. CONSEQUENCES OF AI FOR PRICING
In this section, we provide an overview of the research highlighting potential
consequences of AI, for each of the advantages we discussed earlier.

3.1 Dynamic Pricing

The objective of AI algorithms is to set prices based on real-time primitives
(consumer preferences and supply). This idea is not new and the technology to
implement such pricing has existed for decades (Seele, Dierksmeier, Hofstetter, &
Schultz, 2021). However, dynamic pricing is still not implemented in many
markets. A famous example dates back to 1999 when the Coca-Cola Company
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tested vending machines that varied price based on the weather.10 The CEO and
chairman, Douglas Ivester, described how the utility for a Coke can increase
during sporting events and during summer heat and said “the machine will simply
make this process automatic.” The public outcry after these comments was
intense, and these machines were never launched!

From a microeconomic perspective, if AI algorithms unintentionally shift
primitives, then the derived price may no longer be optimal.11 One mechanism
through which this shift could happen is via consumer concerns about fairness.
Increasing prices during periods of high demand might inspire consumers to
question firms’ fairness (Kahneman, Knetsch, & Thaler, 1986; Rotemberg, 2011).
In the Coke example, rival Pepsi’s spokesperson raised these concerns and said,
“We believe that machines that raise prices in hot weather exploit consumers who
live in warm climates.” In laboratory experiments, Haws and Bearden (2006);
Weisstein, Monroe, and Kukar-Kinney (2013) show that participants’ percep-
tions of companies’ fairness and trustworthiness are affected by dynamic pricing.
Further, Feinberg, Krishna, and Zhang (2002) show that these fairness concerns
can exist with targeted promotions.

A second mechanism for shifting attitudes toward AI pricing could come
through consumers’ learning about their own primitives through their obser-
vations of price variation. Aparicio et al. (2022) find that consumers exposed to
algorithmic pricing in the context of online grocery shopping become more
price-sensitive, compared to similar users buying the same products, in the same
time periods, without such price exposure. This finding complements earlier
work showing that consumers who receive promotions may become more prone
to seek deals in the future (Elberg, Gardete, Macera, & Noton, 2019; Zhang
et al., 2020).

The welfare implications of dynamic pricing are nontrivial. Castillo (2020)
estimates that Uber’s AI-based surge pricing increases welfare for riders, relative
to a benchmark of uniform pricing. The effect is driven by two factors: (1) a
better allocation of cars (i.e., during times and in areas of high demand) means
that riders benefit from being more likely to find a ride when demand is high; and
(2) surge pricing policies allow for lower prices during times of lower demand (vs.
uniform pricing). However, in times of crises, a purely automated price strategy
also can lead to price gouging (Snyder, 2009). For example, airline prices during
Hurricane Irma and prices for personal care items during COVID-19 have
received abundant media coverage.12 During the recent pandemic crisis, the US
Congress did introduce a Price Gouging Prevention Act,13 which “makes it
unlawful for any person to sell or offer for sale a consumer good or service during
a public health emergency resulting from COVID-19 (i.e., coronavirus disease
2019) at a price that (1) is unconscionably excessive, and (2) indicates that the
seller is using the circumstances related to the public health emergency to increase
prices unreasonably.” In 2020, the New York Attorney General did fine three
sellers on Amazon for price gouging of hand sanitizers at the start of the crisis.14

The three sellers were ordered to pay a fine and to reimburse consumers who had
purchased these products.
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3.2 Personalized Pricing

The White House’s Council of Economic Advisors (CEA) (‘White House’, 2015)
addressed the scope of AI pricing algorithms. The CEA cautioned that AI pricing
algorithms lower costs of first-degree price discrimination, leading to a transfer of
welfare from consumers to firms. Similar questions have been raised in the rev-
enue management literature (Van Der Rest, Sears, Miao, & Wang, 2020). The
CEA did report that this concern may be somewhat limited, and no policies were
enacted to legally limit the use of personalized pricing. Important to this debate,
Dubé and Misra (2021) quantify the welfare gains and losses of personalized
prices. Their results indicate that personalized pricing reduces overall customer
surplus by 23%, however is welfare enhancing for a majority (over 60%) of
consumers (primarily smaller firms) who benefit from a lower price (vs. uniform
pricing). They estimate the role of policy restrictions for personalized pricing and
find that sometimes the full model generates more consumer surplus than several
of the restricted scenarios. Therefore, they conclude: “over-regulation of the types
of data firms can use for personalized pricing purposes could exacerbate rather
than offset some of the harm to consumers.” In other markets, Kallus and Zhou
(2021) indicate that personalized pricing in elective vaccines and micro-finance
can be welfare enhancing. Future empirical work can consider these welfare
implications under different industries and market conditions.

The area of personalized pricing relates to broader questions about possible
downsides of algorithmic management, or “algorithmic bias” (e.g., Hajian,
Bonchi, & Castillo, 2016; Lambrecht & Tucker, 2019). In this literature,
researchers study potential discrimination among users based on, for example,
race, age, and sexual orientation. As price algorithms learn and keep fine-tuning
their possibilities to become more and more targeted, they may become vulner-
able to learning and exploiting such potential biases.

In the Airbnb context, Zhang, Mehta, Singh, and Srinivasan (2021) study the
extent to which the “smart pricing” tool indirectly reduced or widened the racial
gap among hosts (sellers) on the platform. The question is relevant in terms of
both policy and economic outcomes because technologies that automate prices
may input features, or learn from demand curves, that incorporate racial eco-
nomic inequality and, unintentionally, set prices that exacerbate this inequality
(Cowgill & Tucker, 2019; Kleinberg, Ludwig, Mullainathan, & Rambachan,
2018). Zhang et al. (2021) report quasi-experimental evidence that the algorithm
benefited black adopters more than white adopters, which in turn decreased the
racial revenue gap by more than 70%. The algorithm set similar prices for
equivalent properties owned by black and white hosts. However, while black
hosts benefited from the “smart pricing” tool, they were less likely to adopt it in
the first place. As a result, the racial revenue gap continues to be substantial in the
short-term rental market. Pandey and Caliskan (2021) report similar concerns in
Uber’s location-based pricing algorithms, where they found that more nonwhite
neighborhoods in Chicago experience higher prices. If these biases persist, reg-
ulators may want to require firms to use “de-bias” pricing algorithms (see Kearns
and Roth (2019) for a broader overview).
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3.3 Algorithmic Collusion

In a standard reinforcement learning algorithm, there is an implicit assumption
that, conditional on the demand state, the true distribution of underlying pref-
erences is stable or stationary but unknown to the algorithm. The implementation
of these algorithms for pricing (e.g., Kleinberg & Leighton, 2014; Misra et al.,
2019) can be considered as dynamic field experiments that balance learning about
preferences and earning profits. However, what if multiple firms are simulta-
neously learning each others’ algorithms? An increasing body of work suggests an
important distortion: Long-run prices can be above the competitive level, which
has led to antitrust concerns that companies may inadvertently end up colluding
through algorithms.

Here we emphasize that directly programming collusion is illegal and has been
prosecuted by the US Department of Justice. As per a case filings, the “defendant
and his co-conspirators adopted specific pricing algorithms for the sale of certain
posters with the goal of coordinating changes to their respective prices and wrote
computer code that instructed algorithm-based software to set prices in confor-
mity with this agreement.”15

Having said that, we now review mechanisms that can cause independent,
competing pricing algorithms to set prices that are supra-competitive.16 The
extant literature tends to rely on theoretical or simulated markets, uncovering
mechanisms that policy makers and regulators may want to monitor going for-
ward. Hansen, Misra, and Pai (2021c) consider a model where firms act as local
monopolists and MAB (i.e., single-state reinforcement learning) models for
pricing (Section 2.3). They find that long-run prices depend on the informational
value (or the signal-to-noise ratio) of the underlying pricing experiments. In
markets where price experiments have low information value, the resulting
long-run prices are statistically indistinguishable from Nash Equilibrium prices.
However, in markets where price experiments have high information value,
market prices are supra-competitive. They also find that markets with more
informative experiments result in correlated experimentation across firms.
Econometrically, in this setting, competitive prices are correlated unobservables
in each firms’ pricing algorithm, resulting in biased learning from experiments.

Calvano, Calzolari, Denicolo, and Pastorello (2020) and Klein (2021) study a
setting where independent firms use Q-learning models within the class of rein-
forcement learning algorithms. Firms consider the current prices of all products
in the market and then set the “optimal” prices in the next period. These studies
show that algorithms consistently learn to charge supracompetitive prices without
communicating with one another. Calvano, Calzolari, Denicolò, and Pastorello
(2019) suggest that the strategies the firms learn are consistent with “stick-and-
carrot” strategies, described in Abreu (1986), where firms learn that deviations
from collusive prices are met with an immediate response. As a result, firms
ignore short-term incentives to reduce prices and maintain a supra-competitive
price.

Other mechanisms for algorithmic collusion include the following. (1) Timing:
Brown and Mackay (2020) find that asynchronous responses can lead to price
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dispersion and therefore non-Nash prices (above Nash in simulations); (2)
Commitment: Salcedo (2015) show that if firms commit to a particular algorithm,
it can enable supra-competitive prices; (3) Demand information: Miklós-Thal
and Tucker (2019) and O’connor and Wilson (2019) study settings where com-
petitors are unsure about the underlying demand, and they show in some con-
ditions that information can increase the value of collusion; (4) Third-party
pricing agents: Harrington (2020) proposes a setting where firms are unable to
design their own algorithms; and if a third-party vendor designs them instead, it
may design a “collusive” algorithm to maximize the two firms’ joint profit; (5)
Asynchronous learning: Asker, Fershtman, and Pakes (2021) study the role that
complexity plays in the algorithms, and they show that asynchronous learning
(defined as learning limited to actions taken) can lead to monopoly prices.

Although a large and growing literature is being developed on algorithmic
collusion, an important empirical question is still largely unanswered: Are these
mechanisms stable in markets? Recent work in this area includes that of Assad
et al. (2020), which studies prices in German gasoline stations before and after the
stations adopted pricing algorithms. The authors compare prices in markets
before and after algorithms are estimated to be adopted and find that prices
increased in duopoly markets only when both competing firms are estimated to
have adopted algorithms.

4. SUMMARY
In this review article, we discussed how advances in AI technology are enabling
businesses to overcome barriers that pricing managers have been facing for
decades. We have seen an unprecedented increase in firms’ adopting AI algo-
rithms for pricing, both in online and offline markets. Three core areas motivate
businesses to use AI pricing: (1) real-time responses to demand and supply, (2)
price personalization, and (3) demand learning. In terms of their operationali-
zation, we notice that each of these areas is characterized by a stylized empirical
fact: The adoption of price algorithms tends to increase the frequency of price
changes or the price dispersion across customers. Despite the benefits from a
revenue management perspective, AI pricing raises timely and challenging
questions about its effects on the public at large, including discrimination, fair-
ness concerns, transparency, and market collusion between sellers.

Throughout the review, we have mentioned many areas that would benefit
from further research. Here, we focus on three. One promising research area
would be scaling up AI price algorithms for multi-product firms. Currently, the
extant literature and the extant price algorithms deployed in the field tend to
consider single-product price optimization. Imagine a firm using AI pricing
algorithms to learn optimal prices for 20 products. For each product, the firm
might consider 15 different prices (as in Calvano et al., 2019). In this case, a
product-level analysis would consider 20 different problems with 15 prices each
(20 p 15 in complexity), while a joint optimization problem would consider 1520
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different price vectors – clearly an intractable problem. Studying possible sim-
plifications is an important step toward enabling firms to solve this problem.

A second area that is currently underrepresented in the literature is how AI
pricing algorithms affect demand. Extant literature mainly considers web-scraped
pricing data; meanwhile, we encourage scholars to obtain novel insights using
real-time purchase (demand) data, combined with institutional knowledge about
how the company actually sets prices. Consider a dataset that includes prices and
demands for an online platform and that has the following features: (1) prices
that vary across users and over short time intervals, and (2) a large number of
potential substitute products. This new form of demand data poses new statistical
challenges and requires academics to develop new econometric methods to
accurately estimate demand primitives. For example, researchers can leverage
knowledge about the specifics of the algorithm to control for endogenous price
changes. Another challenge in this area of research is to consider the bias in AI
learning algorithms when exposure to algorithms can change consumer primitives
such as price elasticity (Aparicio et al., 2022). Future research can derive AI
pricing algorithms that can incorporate changes in demand primitives.

A third important topic that would benefit from further research is how public
policy and competition law can account for the accelerated changes brought by
algorithm pricing. Research could consider the welfare implications from
dynamic and personalized pricing in competitive markets; biases or demographic
inputs that are unintentionally picked up or exacerbated by an algorithm; societal
implications when price-setting is increasingly shifted from humans to machines
(and the organizational or cultural tensions that might be created within a
company); and potential tacit collusion between algorithms of rival firms.
Related to these important phenomena, we note an overarching question: Should
legal restrictions be placed on the implementation of algorithmic pricing? If so,
when? Should policy-makers ask firms to reveal their pricing algorithms?

NOTES
1. For example, see Ma (2016); industry reports suggest that Amazon.com sells about

750 million different products https://www.scrapehero.com/how-many-products-does-
amazon-sell-march-2021 (last accessed 02/06/2022); in contrast, brick-and-mortar stores
sell 20,000 different products (Anderson et al., 2015). For a broader overview see the
billion prices project (Cavallo & Rigobon, 2016).
2. This section considers cross-sectional price discrimination, in contrast to prices that

vary based on time varying demand and supply conditions or inter-temporal price
discrimination discussed in the prior section.
3. More precisely, they show that Bayesian choice models (vs. prediction models from

machine learning, such as neural networks or random forests) generate, on average, higher
expected profits.
4. In this B2B setting, a prospective employer is a customer of the company

ziprecruiter.com.
5. More precisely, the authors estimate a Weighted Likelihood Bootstrap estimator to

estimate a heterogeneous logit demand model.
6. See Huang, Ellickson, and Lovett (2021); Aparicio and Simester (2022) for empirical

evidence.
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7. At time t, consider all the data from time 0 to time t and estimate the parametric
demand model. Consider a realization of the estimated parameters from the asymptotic
distribution (frequentist statistics) or from the posterior distribution (Bayesian statistics).
Based on this parameter, set the optimal prices for time t, and repeat.
8. In each round, each price is given an index or score based on two factors: (1) the

observed historical profit from charging this price (earning); and (2) the number of times
this price has been tried in the past (learning). The algorithm simply plays the price with the
highest index (similar to Gittins, 1979), observes profit, and updates its information for the
next round.
9. With discrete states and actions, rewards can be represented by a matrix (called the Q

matrix), e.g., rows are states and columns are actions; and each value is the current esti-
mate of the discounted rewards for each action in each state. The algorithm updates the
relevant cell of this matrix as new data are realized. This is an “off-policy” algorithm and
its implementation can consider a heuristic-based experimentation – for example, e-greedy.
10. See: https://www.nytimes.com/1999/10/28/business/variable-price-coke-machine-

being-test ed.html.
11. See Bergen, Dutta, Guszcza, and Zbaracki (2021) for a discussion of managerial

implications of these unintentional consequences.
12. See: https://www.nytimes.com/2017/09/17/travel/price-gouging-hurricane-irma-air-

lines.html and https://www.nytimes.com/2020/03/27/us/coronavirus-price-gouging-hand-
sanitizer-masks-wipes.html.
13. See: https://www.congress.gov/bill/117th-congress/house-bill/675.
14. See: https://ag.ny.gov/press-release/2020/attorney-general-james-stops-three-amazon-

sellers-price-gouging-hand-sanitizer.
15. See: https://www.justice.gov/opa/pr/former-e-commerce-executive-charged-price-

fixing-antitrust-divisions-first-online-marketplace.
16. See Hansen, Misra, and Pai (2021b); Harrington (2018); Calvano, Calzolari,

Denicolò, Harrington, and Pastorello (2020) for a more detailed summary of the literature.

REFERENCES
Abreu, D. (1986). Extremal equilibria of oligopolistic supergames. Journal of Economic Theory, 39,

191–225.
Adams, B., & Williams, K. R. (2019). Zone pricing in retail oligopoly. American Economic Journal:

Microeconomics, 11, 124–156.
Aghion, P., Bolton, P., Harris, C., & Jullien, B. (1991). Optimal learning by experimentation. The

Review of Economic Studies, 58, 621–654.
Allon, G., Cohen, M. C., & Sinchaisri, W. P. (2018). The impact of behavioral and economic drivers

on gig economy workers. Available at SSRN 3274628.
Anderson, E., Jaimovich, N., & Simester, D. (2015). Price stickiness: Empirical evidence of the menu

cost channel. The Review of Economics and Statistics, 97, 813–826.
Aparicio, D., Eckles, D., & Kumar, M. (2022). Algorithmic pricing and consumer sensitivity to price

variability. Working Paper. MIT.
Aparicio, D., Metzman, Z., & Rigobon, R. (2021). The pricing strategies of online grocery retailers.

Working Paper No. 28639. NBER.
Aparicio, D., & Rigobon, R. (2021). Quantum prices. Working Paper No.26646. NBER.
Aparicio, D., & Simester, D. (2022). Price frictions and the success of new products. Marketing Sci-

ence, forthcoming.
Asker, J., Fershtman, C., & Pakes, A. (2021). Artificial intelligence and pricing: The impact of algorithm

design. Technical Report. National Bureau of Economic Research.
Assad, S., Clark, R., Ershov, D., & Xu, L. (2020). Algorithmic pricing and competition: Empirical

evidence from the German retail gasoline market. Working Paper. CESifo.
Auer, P. (2002). Using confidence bounds for exploitation-exploration trade-offs. Journal of Machine

Learning Research, 397–422.

Artificial Intelligence and Pricing 121

https://www.nytimes.com/1999/10/28/business/variable-price-coke-machine-being-tested.html
http://www.nytimes.com/1999/10/28/business/variable-price-coke-machine-being-test
http://www.nytimes.com/1999/10/28/business/variable-price-coke-machine-being-test
https://www.nytimes.com/2017/09/17/travel/price-gouging-hurricane-irma-airlines.html
https://www.nytimes.com/2017/09/17/travel/price-gouging-hurricane-irma-airlines.html
https://www.nytimes.com/2020/03/27/us/coronavirus-price-gouging-hand-sanitizer-masks-wipes.html
https://www.nytimes.com/2020/03/27/us/coronavirus-price-gouging-hand-sanitizer-masks-wipes.html
https://www.congress.gov/bill/117th-congress/house-bill/675
https://ag.ny.gov/press-release/2020/attorney-general-james-stops-three-amazon-sellers-price-gouging-hand-sanitizer
https://ag.ny.gov/press-release/2020/attorney-general-james-stops-three-amazon-sellers-price-gouging-hand-sanitizer
https://www.justice.gov/opa/pr/former-e-commerce-executive-charged-price-fixing-antitrust-divisions-first-online-marketplace
https://www.justice.gov/opa/pr/former-e-commerce-executive-charged-price-fixing-antitrust-divisions-first-online-marketplace


Baker, W., Kiewell, D., & Winkler, G. (2014). Using big data to make better pricing decisions.
McKinsey and Company.

Bergen, M. E., Dutta, S., Guszcza, J., & Zbaracki, M. J. (2021). How AI can help companies set prices
more ethically. Harvard Business Review.

Borenstein, S., & Rose, N. L. (1994). Competition and price dispersion in the US airline industry.
Journal of Political Economy, 102, 653–683.

Brown, Z., & Mackay, A. (2020). Competition in pricing algorithms. Available at SSRN 3485024.
Cachon, G. P., & Swinney, R. (2011). The value of fast fashion: Quick response, enhanced design, and

strategic consumer behavior. Management Science, 57, 778–795.
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